Advertisement

Photonic Network Communications

, Volume 38, Issue 3, pp 378–389 | Cite as

Performance comparison of M-QAM and DQPSK modulation schemes in a 2 × 20 Gbit/s–40 GHz hybrid MDM–OFDM-based radio over FSO transmission system

  • Mehtab SinghEmail author
  • Jyoteesh Malhotra
Original Paper
  • 59 Downloads

Abstract

This work is focused on the modeling and performance investigation of a 2 × 20 Gbit/s–40 GHz hybrid mode division multiplexing–orthogonal frequency division multiplexing-based radio over free space optics (RoFSO) transmission system under the influence of different weather conditions. The performance of the proposed system has been compared for 4-quadrature amplitude modulation (QAM), differential quadrature phase-shift keying, 16-QAM, and 32-QAM modulation schemes using error vector magnitude, optical signal-to-noise ratio requirement, and maximum link reach as the performance metrics. The results show that 4-QAM scheme demonstrates the best performance. The proposed RoFSO transmission system incorporating 4-QAM modulation demonstrates a successful transmission of 2 × 20 Gbit/s–40 GHz information over 104 km link range under clear weather conditions. Also, the maximum link range using the proposed system is reported as 4.52 km under light fog, 2.78 km under moderate fog, and 2.11 km under heavy fog conditions. Further, the performance of the proposed system has been compared with the previously reported literature which shows that the proposed system has a better figure of merit (information rate × transmission distance). The presented work can be used to implement a spectrum efficient, high-speed, long-haul information transmission system for future wireless networks.

Keywords

Radio over free space optics (RoFSO) Quadrature amplitude modulation (QAM) Differential quadrature phase-shift keying (DQPSK) Hermite–Gaussian (HG) modes Mode division multiplexing (MDM) Atmospheric attenuation 

Notes

References

  1. 1.
    Khalighi, M., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  2. 2.
    Chaudhary, S., Amphawan, A.: Solid core PCF-based mode selector for MDM–Ro-FSO transmission systems. Photonics Netw. Commun. 36(2), 263–271 (2018)CrossRefGoogle Scholar
  3. 3.
    Chaudhary, S., Amphawan, A.: Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM–Ro-FSO transmission systems. Laser Phys. 28(7), 1–8 (2018)CrossRefGoogle Scholar
  4. 4.
    Chaudhary, S., Amphawan, A.: High speed MDM–Ro-FSO communication system by incorporating AMI scheme. Int. J. Electron. Lett. 7(3), 304–310 (2018)CrossRefGoogle Scholar
  5. 5.
    Chaudhary, S.: Optimization of AMI–MDM–RoFSO under atmospheric turbulence. Eur. Phys. J. Conf. 162, 01020 (2017)CrossRefGoogle Scholar
  6. 6.
    Kaur, D., Chaudhary, S.: 4 × 10 Gbps cost effective hybrid OADM–MDM short haul interconnects. Microw. Opt. Technol. Lett. 58, 1613–1617 (2017)CrossRefGoogle Scholar
  7. 7.
    Chaudhary, S., Lin, B., Tang, X., Wei, X., Zhou, Z., Lin, C., Zhang, M., Zhang, H.: 40 Gbps–80 GHz PSK–MDM based Ro-FSO transmission system. Opt. Quant. Electron. 50, 321 (2018)CrossRefGoogle Scholar
  8. 8.
    Kaisaleh, K.: Performance of APD-based, PPM optical communication system in atmospheric turbulence. IEEE Trans. Commun. 53(9), 1455–1461 (2005)CrossRefGoogle Scholar
  9. 9.
    Chatzidiaantis, N., Lioumpas, A., Karangiannidis, G., Aron, S.: Adaptive subcarrier PSK modulation in free space optical systems. IEEE Trans. Commun. 59(5), 1368–1377 (2011)CrossRefGoogle Scholar
  10. 10.
    Liu, Q., Lu, Q.: Subcarrier PSK intensity modulation for optical wireless communication through turbulent atmosphere channel. IEEE Int. Conf. Commun. (ICC) 3, 1761–1765 (2015)Google Scholar
  11. 11.
    Sharma, N., Garg, P.: Cross-QAM signaling in free space optical communication systems with generalized pointing errors. In: IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, Toronto (2017)Google Scholar
  12. 12.
    Sharma, V., Kaur, G.: High speed long reach OFDM–FSO transmission link incorporating OSSB and OTSB schemes. Optik 124, 6111–6114 (2013)CrossRefGoogle Scholar
  13. 13.
    Chaudhary, S., Amphawan, A., Nisar, K.: Realization of free space optics with OFDM under atmospheric turbulence. Optik 125(18), 5196–5198 (2014)CrossRefGoogle Scholar
  14. 14.
    Bhanja, U., Khuntia, A., Swati, A.: Performance analysis of a SAC-OCDMA FSO network. In: 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 1–6, Solan (2017)Google Scholar
  15. 15.
    Kaur, G., Srivastava, D., Singh, P., Parasher, Y.: Development of a novel hybrid PDM/OFDM technique for FSO system and its performance analysis. Opt. Laser Technol. 109, 256–262 (2019)CrossRefGoogle Scholar
  16. 16.
    Jeyaseelan, J., Kumar, D., Caroline, B.: PolSK and ASK modulation techniques based BER analysis of WDM–FSO system for under turbulence conditions. Wirel. Pers. Commun. 103, 3221 (2018)CrossRefGoogle Scholar
  17. 17.
    Jeyaseelan, J., Kumar, D., Caroline, B.: Performance analysis of free space optical communication system employinh WDM-PolSK under turbulent weather conditions. J. Optoelectron. Adv. Mater. 20(9), 506–514 (2018)Google Scholar
  18. 18.
    Amphawan, A., Mishrab, V., Nisaran, K., Nedniyomc, B.: Realtime holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. J. Mod. Opt. 59, 1745–1752 (2012)CrossRefGoogle Scholar
  19. 19.
    Amphawan, A., Benjaporn, N., Nashwan, M.: Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. J. Mod. Opt. 59(20), 1–9 (2014)Google Scholar
  20. 20.
    Amphawan, A.: Binary encoded computer generated holograms for temporal phase shifting. Opt. Express 19, 23085–23096 (2011)CrossRefGoogle Scholar
  21. 21.
    Optiwave, Optisystem, Ottawa, Canada (2018)Google Scholar
  22. 22.
    Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  23. 23.
    Ghassemlooy, Z., Popoola, W.: Terrestrial free space optical communications. In: Fares, S.A., Adachi, F. (eds.) Mobile and Wireless Communication Network Layer and Circuit Level Design. InTech (2010)Google Scholar
  24. 24.
    Mourka, A., et al.: Modal characterization using principal component analysis: application to bessel, higher-order gaussian beams and their superposition. Sci. Rep. 3, 1422 (2013)CrossRefGoogle Scholar
  25. 25.
    Amphawan, A., et al.: Modal decomposition of output field from holographic mode field generation in a multimode fiber channel. In: IEEE International Conference on Photonics (ICP), pp. 1–5. IEEE, Langkawi (2010)Google Scholar
  26. 26.
    Recommendation ITU-R, P.1814, May 2–7Google Scholar
  27. 27.
    Shafik, R., Rahman, S., Islam, A.: On the extended relationships among EVM, BER and SNR as performance metrics. In: At 4th International Conference on Electrical and Computer Engineering 4th International Conference on Electrical and Computer Engineering, pp. 408–411, Bangladesh (2006)Google Scholar
  28. 28.
    Karaki, J., Giacoumidis, E., Grot, D., Guillossou, T., Gosset, C., Bidan, R., Gall, T., Jaouën, Y., Pincemin, E.: Dual-polarization multi-band OFDM versus single-carrier DPQPSK for 100 Gb/s long-haul WDM transmission over legacy infrastructure. Opt. Express 21, 16982 (2013)CrossRefGoogle Scholar
  29. 29.
    Kahn, J.: Modulation and detection techniques for optical communication systems. In: Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Technical Digest (CD) (Optical Society of America, 2006), Paper CThC1Google Scholar
  30. 30.
    Kahn, J., Ho, K.: Modulation and detection techniques for DWDW systems. In: Forestieri, E. (ed.) Optical Communication Theory and Techniques. Springer, Boston (2005)Google Scholar
  31. 31.
    Krishnan, P., Jana, U., Kanekal, B., Kumar, A.: Asymptotic bit-error rate analysis of quadrature amplitude modulation and phase-shift keying with OFDM RoFSO overMturbulence in the presence of pointing errors. IET Commun. 12(16), 2046–2051 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentGuru Nanak Dev UniversityJalandharIndia

Personalised recommendations