Advertisement

Photonic Network Communications

, Volume 38, Issue 2, pp 206–218 | Cite as

Design of high-speed 10-Gb/s wired/FSO systems for local area communication networks for maximum reach

  • A. R. PalanisamyEmail author
  • G. M. Tamilselvan
  • A. Pushparaghavan
Original Paper
  • 43 Downloads

Abstract

This paper presents the numerical simulation studies of upgraded system for single-mode fiber (SMF wired)/free space optics (FSO wireless) under high-speed operation of 10 Gb/s. Further, the maximum reach of the system is analyzed based on various advanced modulation techniques, namely phase frequency shift keying (CPFSK), quadrature amplitude modulation, differential phase-shift keying, frequency shift keying, pulse amplitude modulation and different optical amplifiers, namely erbium-doped fiber amplifier, traveling wave semiconductor optical amplifier and parametric optical amplifier, respectively. The overall system studies are done by optiwave system software through which bit error rate and Q-factor are studied. The trade-off between different all-optical amplifiers and modulation techniques is studied to show the enhancement of upgrading system. The simulation results show that the maximum reach of distance belongs to CPFSK modulation scheme.

Keywords

CPFSK QAM DPSK FSK PAM FSO BER and Max. Q-factor 

Notes

References

  1. 1.
    Hammadi, M., Zghair, E.M.: Transmission performance analysis of three different channels in optical communication systems. Int. J. Sci. Eng. Res. 5(2), 1615–1618 (2014)Google Scholar
  2. 2.
    Willebrand, H., Ghuman, B.S.: Free-Space Optics: Enabling Optical Connectivity in Today’s Networks. SAMS Publishing, Indianapolis (2002)Google Scholar
  3. 3.
    Vishwakarma, P., Vijay, J.: Comparative analysis of free space optics and single mode fiber. Int. J. Adv. Eng. Manag. Sci. (IJAEMS) 2(1), 33–36 (2016)Google Scholar
  4. 4.
    Manor, H., Arnon, S.: Performance of an optical wireless communication system as a function of wavelength. Appl. Optik. 42(21), 4285–4294 (2003)CrossRefGoogle Scholar
  5. 5.
    Mohd Supa’at, A.S., Mohammad, A.B., Tong, Y.T., Idrus, S.M.: Unguided optical communication: design and evaluation in Malaysian weather, In: Proceedings of Research Seminar on Electronics, Aerospace, Information Technology and Telecommunications, UTM, pp. 269–271 (1998)Google Scholar
  6. 6.
    Mohammed, N.A., El-Wakeel, A.S., Aly, M.H.: Pointing error in FSO link under different weather conditions. Int. J. Video Image Process. Netw. Secur. IJVIPNS-IJENS 12(1), 6–9 (2012)Google Scholar
  7. 7.
    Singh, M.: Simulative analysis of 10 Gbps high speed free space optical communication link. Int. J. Future Gener. Commun. Netw. 9(3), 139–144 (2016).  https://doi.org/10.14257/ijfgcn.2016.9.3.13 CrossRefGoogle Scholar
  8. 8.
    Kaur, H., Sarangal, H.: Simulative investigation of FSO system using 4 × 4 transmitter receiver combination integrated with various types of amplifiers under different weather conditions. Int. J. Signal Process. Image Process. Pattern Recognit. 9(3), 11–16 (2016).  https://doi.org/10.14257/ijsip.2016.9.3.02 Google Scholar
  9. 9.
    Malik, A., Singh, P.: Free space optics: current applications and future challenges. Hindawi Publ. Corp. Int. J. Opt. 945483 (2015).  https://doi.org/10.1155/2015/945483 Google Scholar
  10. 10.
    Henniger, H., Wilfert, O.: An introduction to free space optical communications. Radio Eng. 19(2), 203–212 (2010)Google Scholar
  11. 11.
    Chow, C.W., Lin, Y.H.: Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation. Opt. Express 20, 9243–9248 (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, N., Zhong, W.D., Heng, Y.H., Cheng, T.H.: Comparison of NRZ and RZ modulations in laser intersatellite communication systems. In: International Conference on Advanced Infocomm Technology 08, China, pp. 29–32 (2008)Google Scholar
  13. 13.
    Perez, G., Lucio, J.A.A., Manzano, O.G.I., Trejoduran, M., Martin, H.G.: Efficient modulation formats for high bit-rate fiber transmission. Acta Universitaria, Mayo-agosto 16(2), 17–26 (2006)Google Scholar
  14. 14.
    Lavery, D., Behrens, C., Savory, S.J.: A comparison of modulation formats for passive optical networks. Opt. Express 19, B836–B841 (2011)CrossRefGoogle Scholar
  15. 15.
    Ives, D.J., Bayvel, P., Savory, S.J.: Adapting transmitter power and modulation format to improve optical network performance utilizing the Gaussian noise model of nonlinear impairments. IEEE J. Light Wave Technol. 32, 4087–4096 (2014)CrossRefGoogle Scholar
  16. 16.
    Kaur, R., Dewra, S.: Performance evaluation of passive optical network using different modulation formats. J. Opt. Commun. 00, 00 (2016).  https://doi.org/10.1515/joc-2015-0096 Google Scholar
  17. 17.
    Wei, J., Zhou, J., Giacoumidis, E., Haigh, P.A., Tang, J.: DSP-based 40 Gb/s lane rate next-generation access networks. Future Internet 10, 1–11 (2018)CrossRefGoogle Scholar
  18. 18.
    Yu, L., Ma, Y., Yang, J.: Performance simulation and optimization of Er3+/Pr3+ doped fiber amplifiers by optisystem. Inf. Technol. J. 12, 2561–2567 (2013)CrossRefGoogle Scholar
  19. 19.
    Ismail, K., Menon, P.S., Shaari, S., Bakarman, H.A., Arsad, N., Bakar, A.A.A.: Flat gain, wide bandwidth of in-line semiconductor optical amplifier in CWDM systems. IETE Techn. Rev. 30, 1–9 (2013)CrossRefGoogle Scholar
  20. 20.
    Seraji, F.E., Kiaee, M.S.: Comparison of EDFA and Raman amplifiers effects on RZ and NRZ encoding techniques in DWDM optical network with bit rate of 80 Gb/s. Phys. Astron. Int. J. 2, 1–6 (2018)Google Scholar
  21. 21.
    Ma, J., Zhan, Y.: Full-duplex hybrid PON/RoF link with the 10 Gbit/s 16-QAM signal for alternative wired and 60 GHz millimeter-wave wireless accesses. Photon Netw. Commun. 27, 16–27 (2013)CrossRefGoogle Scholar
  22. 22.
    Chow, C.W., Yeh, C.H., Sung, J.Y., Hsu, C.W.: Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal. Opt. Express 25, 30719–30724 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, Ruijiao, Ma, Jianxin, Xin, Xiangjun: Full-duplex fiber-wireless link for alternative wired and 40-GHz band wireless access based on differential quaternary phase-shift optical single sideband millimeter-wave signal. Opt. Eng. 54, 1–11 (2015)Google Scholar
  24. 24.
    Zhang, R., Ma, J.: A simple bidirectional hybrid optical link for alternatively providing wired and wireless accesses based on an optical phase modulator. Photon Netw. Commun. (2017).  https://doi.org/10.1007/s11107-017-0712-1 Google Scholar
  25. 25.
    Huang, X.-H., Lu, H.-H., Li, C.-Y., Wang, Y.-C., Chang, J.-C., Jheng, Y.-B., Tsai, W.-S.: Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes. Laser Phys. 28, 066205–066210 (2018)CrossRefGoogle Scholar
  26. 26.
    Optiwave_OptiSystem, OptiPerformer version 16.0 UserGuide, Optical communication System Design Software (2018). https://optiwave.com/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. R. Palanisamy
    • 1
    Email author
  • G. M. Tamilselvan
    • 2
  • A. Pushparaghavan
    • 3
  1. 1.Department of ECEPark College of TechnologyCoimbatoreIndia
  2. 2.Department of ECESri Krishna College of TechnologyCoimbatoreIndia
  3. 3.Faculty of Electrical and Computer Engineering, Bahir Dar Institute of TechnologyBahir Dar University of EthiopiaBahir DarEthiopia

Personalised recommendations