Photonic Network Communications

, Volume 38, Issue 2, pp 185–205 | Cite as

A survey on role of photonic technologies in 5G communication systems

  • Rohan KattiEmail author
  • Shanthi Prince
Original Paper


A new generation of mobile communications has been evolving for every 10 years, keeping in mind the enormous data traffic, huge capacity requirements, excellent quality of service with minimal latency; there is a shift in paradigm toward the upcoming 5G technology which is expected to be rolled out by 2020 that promises to meet the requirements stated above. 5G is envisaged to be a merged framework of wide range of applications ranging from device-to-device communications, smart grid to Internet of Things and many more. In this survey paper, a brief discussion on the major pillars of 5G which are millimeter wave technology, massive MIMO, ultra-dense network, beamforming and full-duplex transmission are presented. This survey paper also focuses on the role of optics in 5G technology, sometimes commonly referred to as microwave photonics, an interdisciplinary research platform. Due to huge bandwidth and enormous capacity upgrade, optical fibers are considered to be ideal backhaul and fronthaul media rather than copper cables in order to support small cells and next-generation networks. These advantages of optical fiber technology enable integrated optical and wireless access technologies for 5G wireless communications an interdisciplinary area of research.


5G Photonics for 5G Millimeter wave technology Network densification Microwave photonics 



The authors would like to acknowledge Ministry of Electronics and Information Technology (MeitY), Government of India, for the Visvesvaraya Ph.D. fellowship.


  1. 1.
    Cisco Visual Networking Index: global mobile data traffic forecast update, 2017–2022. White paper (2019)Google Scholar
  2. 2.
    Ericsson mobility report: (2016)Google Scholar
  3. 3.
    Ten key rules of 5G deployment: Enabling 1 Tbit/s/km2 in 2030, Nokia. White paper (2015)Google Scholar
  4. 4.
    Rodriguez, J. (ed.): Fundamentals of 5G Mobile Networks. Wiley, London (2015)Google Scholar
  5. 5.
  6. 6.
    Alaa, M., Zaidan, A.A., Zaidan, B.B., Talal, M., Kiah, M.L.M.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017)Google Scholar
  7. 7.
  8. 8.
    Rappaport, T.: Wireless Communications: Principles and Practice. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  9. 9.
    Santhi, K.R., Srivastava, V.K., Senthil Kumaran, G., Butare, A.: Goals of true broad band’s wireless next wave (4G–5G). In: 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), vol. 4, pp. 2317–2321. IEEE (2003)Google Scholar
  10. 10.
    Halonen, T., Romero, J., Melero, J. (eds.): GSM, GPRS and EDGE Performance: Evolution Towards 3G/UMTS. Wiley, New York (2003)Google Scholar
  11. 11.
    Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamentals of WiMAX. Prentice-Hall, Engle-wood Cliffs (2007)Google Scholar
  12. 12.
    Furht, B., Ahson, A. (eds.): Long Term Evolution: 3GPP LTE Radio and Cellular Technology, pp. 441–443. CRC Press, Boca Raton (2007)Google Scholar
  13. 13.
    Sesia, S., Toufik, I., Baker, M. (eds.): LTE-The UMTS Long Term Evolution: From Theory to Practice. Wiley, New York (2009)Google Scholar
  14. 14.
    5G is coming. Alcatel Lucent Strategic white paper (2015)Google Scholar
  15. 15.
    Nordrum, A.: Everything you need to know about 5G. IEEE Spectrum (2017).
  16. 16.
    Bleicher, A.: Millimeter waves may be the future of 5G phones. IEEE Spectrum (2013).
  17. 17.
    Yu, Y., et al.: Integrated 60 GHz RF Beamforming in CMOS, Analog Circuits and Signal Processing. Springer, Berlin (2011)Google Scholar
  18. 18.
    Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)Google Scholar
  19. 19.
  20. 20.
    Bhushan, N., et al.: Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52, 82–89 (2014)Google Scholar
  21. 21.
    Romanous, B., Bitar, N., Imran, A., Refai, H.: Network densification: challenges and opportunities in enabling 5G. In: 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), pp. 129–134. IEEE (2015)Google Scholar
  22. 22.
    Ge, X., Tu, S., Mao, G., Wang, C.-X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23, 72–79 (2016)Google Scholar
  23. 23.
    Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52, 186–195 (2014)Google Scholar
  24. 24.
    Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8, 742–758 (2014)Google Scholar
  25. 25.
    Swindlehurst, A.L., Ayanoglu, E., Heydari, P., Capolino, F.: Millimeter wave massive MIMO: the next wireless revolution? IEEE Commun. Mag. 52, 56–62 (2014)Google Scholar
  26. 26.
    Chen, S., Sun, S., Gao, Q., Su, X.: Adaptive beamforming in TDD based mobile communication systems: state of the art and 5G research directions. IEEE Wirel. Commun. 23(6), 81–87 (2016)Google Scholar
  27. 27.
    Kela, P., Costa, M., Turkka, J., Koivisto, M., Werner, J., Hakkarainen, A., Valkama, M., Jantti, R., Leppanen, K.: Location based beamforming in 5G ultra-dense networks. In: Vehicular Technology Conference (VTC-Fall), 2016 IEEE 84th, pp. 1–7. IEEE (2016)Google Scholar
  28. 28.
    Vook, F.W., Ghosh, A., Thomas, T.A.: MIMO and beamforming solutions for 5G technology. In: Microwave Symposium (IMS), 2014 IEEE MTT-S International, pp. 1–4. IEEE (2014)Google Scholar
  29. 29.
    Razavizadeh, S.M., Ahn, M., Lee, I.: Three-dimensional beamforming: a new enabling technology for 5G wireless networks. IEEE Signal Process. Mag. 31, 94–101 (2014)Google Scholar
  30. 30.
    Ma, Z., Zhang, Z.Q., Ding, Z.G., Fan, P.Z., Li, H.C.: Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci. 58, 1–20 (2015)Google Scholar
  31. 31.
    Mahmood, N.H., Berardinelli, G., Tavares, F.M.L., Mogensen, P.: On the potential of full duplex communication in 5G small cell networks. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, pp. 1–5. IEEE (2015)Google Scholar
  32. 32.
    Zhang, Z., Chai, X., Long, K., Vasilakos, A.V., Hanzo, L.: Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Commun. Mag. 53, 128–137 (2015)Google Scholar
  33. 33.
    Zhang, X., Cheng, W., Zhang, H.: Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks. IEEE Wirel. Commun. 22, 112–121 (2015)Google Scholar
  34. 34.
    Winzer, P.J.: Scaling optical fiber networks: challenges and solutions. Opt. Photonics News 26, 28–35 (2015)Google Scholar
  35. 35.
    Marpaung, D., Yao, J., Capmany, J.: Integrated microwave photonics. Nat. Photonics 13(2), 80 (2019)Google Scholar
  36. 36.
    Zhu, S., Li, M., Wang, X., Zhu, N.H., Li, W.: Photonic generation of ultra-wideband signal by truncating a continuous wave into a pulse. IEEE Photonics Technol. Lett. 30(21), 1862–1865 (2018)Google Scholar
  37. 37.
    Wu, T., Zhang, C., Zhou, H., Huang, H., Qiu, K.: Photonic microwave waveforms generation based on frequency and time-domain synthesis. IEEE Access 6, 34372–34379 (2018)Google Scholar
  38. 38.
    Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Lee, K.L., Yang, Y., Novak, D., Waterhouse, R.: Fiber-wireless networks and subsystem technologies. J. Lightwave Technol. 28(4), 390–405 (2010)Google Scholar
  39. 39.
    Capmany, J., Ortega, B., Pastor, D.: A tutorial on microwave photonic filters. J. Lightwave Technol. 24(1), 201–229 (2006)Google Scholar
  40. 40.
    Serafino, G., Scotti, F., Lembo, L., Hussain, B., Porzi, C., Malacarne, A., Maresca, S., Onori, D., Ghelfi, P., Bogoni, A.: Towards a new generation of radar systems based on microwave photonic technologies. J. Lightwave Technol. 37, 643–650 (2019)Google Scholar
  41. 41.
    Waterhouse, R., Novack, D.: Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16(8), 84–92 (2015)Google Scholar
  42. 42.
    Roeloffzen, C., Visscher, I., Taddei, C., Geskus, D., Oldenbeuving, R., Epping, J., Timens, R.B., van Dijk, P., Heideman, R., Hoekman, M., Grootjans, R.: Integrated microwave photonics for 5G. In: CLEO: Applications and Technology, 13 May 2018, p. JTh3D-2. Optical Society of America (2018)Google Scholar
  43. 43.
    Yao, J.: Microwave photonics for 5G. In: Proceedings of the SPIE 10945, Broadband Access Communication Technologies XIII, 1094504, 1 Feb 2019Google Scholar
  44. 44.
    Iezekiel, S.: Radio-over-fiber technology and devices for 5G: an overview. In: Broadband Access Communication Technologies X, 12 Feb 2016, vol. 9772, p. 97720A. International Society for Optics and Photonics (2016)Google Scholar
  45. 45.
    Tsokos, C., Groumas, P., Katopodis, V., Avramopoulos, H., Kouloumentas, C.: Enabling photonic integration technology for microwave photonics in 5G systems. In: 2017 19th International Conference on Transparent Optical Networks (ICTON), 2 Jul 2017, pp. 1–4. IEEE (2017)Google Scholar
  46. 46.
    Ranaweera, C., Wong, E., Nirmalathas, A., Jayasundara, C., Lim, C.: 5G C-RAN architecture: a comparison of multiple optical fronthaul networks. In: 2017 International Conference on Optical Network Design and Modeling (ONDM), 15 May 2017, pp. 1–6. IEEE (2017)Google Scholar
  47. 47.
    Mobile, C.: C-RAN: the road towards green RAN. White Pap. Ver. 2, 1–10 (2011)Google Scholar
  48. 48.
    Alcatel-Lucent: LightRadio network: a new wireless experience. White paper (2012)Google Scholar
  49. 49.
    Nokia Siemens Networks: Liquid radio: let traffic waves flow most efficiently. White paper (2011)Google Scholar
  50. 50.
    Samsung: Converging telecom and IT in the LTE RAN’. White paper (2013)Google Scholar
  51. 51.
    Liu, C., Wang, J., Cheng, L., Zhu, M., Chang, G.K.: Key microwave photonics technologies for next-generation cloud based radio access networks. J. Lightwave Technol. 32, 3452–3460 (2014)Google Scholar
  52. 52.
    Ran, C., Wang, S., Wang, C.: Balancing backhaul load in heterogeneous cloud radio access networks. IEEE Wirel. Commun. 22(3), 42–48 (2015)Google Scholar
  53. 53.
    Hung, S.C., Hsu, H., Lien, S.Y., Chen, K.C.: Architecture harmonization between cloud radio access networks and fog networks. IEEE Access 3, 3019–3034 (2015)Google Scholar
  54. 54.
    Kuwano, S., Terada, J., Yoshimoto, N.: Operator perspective on next-generation optical access for future radio access. In: 2014 IEEE International Conference on Communications Workshops (ICC), 10 June 2014, pp. 376–381. IEEE (2014)Google Scholar
  55. 55.
    Liu, C., Zhang, L., Zhu, M., Wang, J., Cheng, L., Chang, G.K.: A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies. J. Lightwave Technol. 31(17), 2869–2875 (2013)Google Scholar
  56. 56.
    Lee, S., Cho, S.H., Lee, J.H.: Future-proof optical-mobile converged access network based on integration of PON with RoF technologies. In 2014 International Topical Meeting on Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), 20 Oct 2014, pp. 409–411. IEEE (2014)Google Scholar
  57. 57.
    G.Sup55: Radio-over-fibre (RoF) technologies and their applications (2015)Google Scholar
  58. 58.
    Al-Raweshidy, H., Komaki, S.: Radio Over Fiber Technologies for Mobile Communications Networks. Artech House, London (2002)Google Scholar
  59. 59.
    Gowda, A.S., Dhaini, A.R., Kazovsky, L.G., Yang, H., Abraha, S.T., Ng’oma, A.: Towards green optical/wireless in-building networks: radio-over-fiber. J. Lightwave Technol. 32(20), 3545–3556 (2014)Google Scholar
  60. 60.
    Gomes, N.J., Monteiro, P.P., Gameiro, A.: Next Generation Wireless Communications Using Radio Over Fiber. Wiley, New York (2012)Google Scholar
  61. 61.
    Kim, J., Sung, M., Kim, E.S., Cho, S.H., Lee, J.H.: 4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications. Opt. Express 26(22), 28216–28227 (2018)Google Scholar
  62. 62.
    Sung, M., Kim, J., Cho, S.H., Chung, H.S., Lee, J.K., Lee, J.H.: Experimental demonstration of bandwidth-efficient indoor distributed antenna system based on IFoF technology supporting 4G LTE-A and 5G mobile services. In: 2018 Optical Fiber Communications Conference and Exposition (OFC), 11 Mar 2018, pp. 1–3. IEEE (2018)Google Scholar
  63. 63.
    Jung, H.D., Lee, K.W., Kim, J.H., Kwon, Y.H., Park, J.H.: Performance comparison of analog and digitized rof systems with nonlinear channel condition. IEEE Photonics Technol. Lett. 28(6), 661–664 (2016)Google Scholar
  64. 64.
    Oliveira, R.S., Frances, C.R., Costa, J.C., Viana, D.F., Lima, M., Teixeira, A.: Analysis of the cost-effective digital radio over fiber system in the NG-PON2 context. In: 2014 16th International Telecommunications Network Strategy and Planning Symposium (Networks), 17 Sep 2014, pp. 1–6. IEEE (2014)Google Scholar
  65. 65.
    Tornatore, M., Chang, G.K., Ellinas, G.: Fiber-Wireless Convergence in Next-Generation Communication Networks. Springer, Berlin (2017)Google Scholar
  66. 66.
    Nirmalathas, A., Gamage, P.A., Lim, C., Novak, D., Waterhouse, R.: Digitized radio-over-fiber technologies for converged optical wireless access network. J. Lightwave Technol. 28(16), 2366–2375 (2010)Google Scholar
  67. 67.
    Alimi, I.A., Teixeira, A.L., Monteiro, P.P.: Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions. IEEE Commun. Surv. Tutor. 20(1), 708–769 (2018)Google Scholar
  68. 68.
    Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., Teixeira, A.: Challenges and opportunities of optical wireless communication technologies. In: Optical Communication Technology. IntechOpen (2017)Google Scholar
  69. 69.
    Alimi, I., Shahpari, A., Ribeiro, V., Kumar, N., Monteiro, P., Teixeira, A.: Optical wireless communication for future broadband access networks. In: 2016 21st European Conference on Networks and Optical Communications (NOC), 1 Jun 2016, pp. 124–128. IEEE (2016)Google Scholar
  70. 70.
    Dahrouj, H., Douik, A., Rayal, F., Al-Naffouri, T.Y., Alouini, M.S.: Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems. IEEE Wirel. Commun. 22(5), 98–104 (2015)Google Scholar
  71. 71.
    Arnon, S., Barry, J., Karagiannidis, G., Schober, R., Uysal, M. (eds.): Advanced Optical Wireless Communication Systems. Cambridge University Press, Cambridge (2012)Google Scholar
  72. 72.
    Pham, A.T., Trinh, P.V., Mai, V.V., Dang, N.T., Truong, C.T.: Hybrid free-space optics/millimeter-wave architecture for 5G cellular backhaul networks. In: 2015 Opto-Electronics and Communications Conference (OECC), 28 Jun 2015, pp. 1–3. IEEE (2015)Google Scholar
  73. 73.
    Douik, A., Dahrouj, H., Al-Naffouri, T.Y., Alouini, M.S.: Hybrid radio/free-space optical design for next generation backhaul systems. IEEE Trans. Commun. 64(6), 2563–2577 (2016)Google Scholar
  74. 74.
    Winzer, P.J.: Making spatial multiplexing a reality. Nat. Photonics 8(5), 345 (2014)Google Scholar
  75. 75.
    Clarke, S., Asselin, S., Vakili, A: Optical super-channels in long-haul network architectures. In: Optical Fiber Communication Conference, p. M2B-4. Optical Society of America (2014)Google Scholar
  76. 76.
    Richardson, D.J., Fini, J.M., Nelson, L.E.: Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013)Google Scholar
  77. 77.
  78. 78.
    Giuntini, M., Grazioso, P., Matera, F., Valenti, A., Attanasio, V., Di Bartolo, S., Nastri, E.: Enabling optical network test bed for 5G tests. Fiber Integr. Opt. 36, 3–24 (2017)Google Scholar
  79. 79.
    Amaya, N., Yan, S., Channegowda, M., Rofoee, B.R., Shu, Y., Rashidi, M., Ou, Y., Hugues-Salas, E., Zervas, G., Nejabati, R., Simeonidou, D.: Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration. Opt. Express 22(3), 3638–3647 (2014)Google Scholar
  80. 80.
    Galve, J.M., Gasulla, I., Sales, S., Capmany, J.: Reconfigurable radio access networks using multicore fibers. IEEE J. Quantum Electron. 52(1), 1–7 (2016)Google Scholar
  81. 81.
    Study on new radio access technology: Radio access architecture and interfaces, V14.0.0 (2017–03), 3GPP, TR 38.801 (2017)Google Scholar
  82. 82.
    Larsen, L.M., Checko, A., Christiansen, H.L.: A survey of the functional splits proposed for 5G mobile crosshaul networks. IEEE Commun. Surv. Tutor. 21, 146–172 (2018)Google Scholar
  83. 83.
    eCPRI Specification V1.1. Interface Specification, Common Public Radio Interface (2018)Google Scholar
  84. 84.
    Zhuang, L., Roeloffzen, C.G., Meijerink, A., Burla, M., Marpaung, D.A., Leinse, A., Hoekman, M., Heideman, R.G., van Etten, W.: Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J. Lightwave Technol. 28(1), 19–31 (2010)Google Scholar
  85. 85.
    Serafino, G., Bogoni, A., Porzi, C., Pinna, S., Nouman, M., Klamkin, J., D’Errico, A., Puleri, M.: A beam-forming network for 5G systems based on precise optical clock and phase shifting. In: 2016 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–4. IEEE (2016)Google Scholar
  86. 86.
    Longbrake, M.: True time-delay beamsteering for radar. In: 2012 IEEE National Aerospace and Electronics Conference (NAECON), pp. 246–249. IEEE (2012)Google Scholar
  87. 87.
    Serafino, G., Porzi, C., Sorianello, V., Ghelfi, P., D’Errico, A., Pinna, S., Puleri, M., Romagnoli, M., Bogoni, A.: Design and characterization of a photonic integrated circuit for beam forming in 5G wireless networks. In: 2017 International Topical Meeting on Microwave Photonics (MWP), pp. 1–4. IEEE (2017)Google Scholar
  88. 88.
    Falconi, F., Porzi, C., Pinna, S., Sorianello, V., Serafino, G., Puleri, M., D’Errico, A., Romagnoli, M., Bogoni, A., Ghelfi, P.: Fast and linear photonic integrated microwave phase-shifter for 5G beam-steering applications. In: 2018 Optical Fiber Communications Conference and Exposition (OFC), 11 Mar 2018, pp. 1–3. IEEE (2018)Google Scholar
  89. 89.
    Serafino, G., Porzi, C., Falconi, F., Pinna, S., Puleri, M., D’Errico, A., Bogoni, A., Ghelfi, P.: Photonics-assisted beamforming for 5G communications. IEEE Photonics Technol. Lett. 30(21), 1826–1829 (2018)Google Scholar
  90. 90.
    Chung, S., Abediasl, H., Hashemi, H.: A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J. Solid State Circuits 53(1), 275–296 (2018)Google Scholar
  91. 91.
    Tsokos, C., Mylonas, E., Groumas, P., Gounaridis, L., Avramopoulos, H., Kouloumentas, C.: Optical beamforming network for multi-beam operation with continuous angle selection. IEEE Photonics Technol. Lett. 31(2), 177–180 (2019)Google Scholar
  92. 92.
    Lu, H., Liu, G., Proietti, R., Squitieri, V., Zhang, K., Castro, A., Gu, Q.J., Ding, Z., Yoo, S.B.: mmWave beamforming using photonic signal processing for future 5G mobile systems. In: Optical Fiber Communication Conference, p. M4J-3. Optical Society of America (2018)Google Scholar
  93. 93.
    Nanzer, J.A., Callahan, P.T., Dennis, M.L., Clark, T.R.: Photonic signal generation for millimeter wave communications. Johns Hopkins APL Tech. Dig. 30, 299–308 (2012)Google Scholar
  94. 94.
    Alper, D., Mehrotra, A., Chowdhury, J.R.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 655–674 (2000)Google Scholar
  95. 95.
    Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron Devices 14, 569–580 (1967)Google Scholar
  96. 96.
    Eisele, H., Rydberg, A., Haddad, G.I.: Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300-GHz frequency range and above. IEEE Trans. Microw. Theory Tech. 48, 626–663 (2000)Google Scholar
  97. 97.
    Enming, X., Xinliang, Z., Lina, Z., Yu, Z., Dexiu, H.: A simple microwave photonic notch filter based on a semiconductor optical amplifier. J. Opt. A Pure Appl. Opt. 11, 085405 (2009)Google Scholar
  98. 98.
    En-Ming, X., Liang, Z.X., Na, Z.L., Yu, Z., Xiu, H.D.: Hybrid active-passive microwave photonic filter with high quality factor. Chin. Phys. Lett. 26, 094208 (2009)Google Scholar
  99. 99.
    Yang, X.P., Gan, J.L., Xu, S.H., Yang, Z.M.: Temperature sensing based on a Brillouin fiber microwave generator. Laser Phys. 23, 045104 (2013)Google Scholar
  100. 100.
    Tan, S., Yan, F., Li, Q., Peng, W., Liu, S., Feng, T., Chang, F.: A stable single longitudinal mode dual wavelength erbium doped fiber ring laser with superimposed FBG and an in line two-taper MZI filter. Laser Phys. 23, 075112 (2013)Google Scholar
  101. 101.
    Kim, C., Kim, I., Li, G., Lange, M.R., Dimmick, T.E., Langlois, P., Reid, B.: Optical microwave/millimeter wave links using direct modulation of two section gain coupled DFB lasers. IEEE Photonics Technol. Lett. 17, 1734–1736 (2005)Google Scholar
  102. 102.
    Li, Y., Bystrom, M., Yoo, D., Goldwasser, S.M., Herczfeld, P.R.: Coherent optical vector modulation for fiber radio using electro optic microchip lasers. IEEE Trans. Microw. Theory Techn. 53, 3121–3129 (2005)Google Scholar
  103. 103.
    Fukushima, S., Ohno, T., Yoshino, K.: Frequency stabilization of millimeter-wave subcarrier using laser heterodyne source and optical delay line. IEEE Photonics Technol. Lett. 13, 1002–1004 (2001)Google Scholar
  104. 104.
    Kuri, T., Kitayama, K.: Long term stabilized millimeter-wave generation using a high-power mode locked laser diode module. IEEE Trans. Microw. Theory Tech. 47, 570–574 (1999)Google Scholar
  105. 105.
    Jianjun, Y., et al.: Optical millimeter wave generation or up-conversion using external modulators. IEEE Photonics Technol. Lett. 18, 265–267 (2006)Google Scholar
  106. 106.
    Mohamed, M., Zhang, X., Hraimel, B., Wu, K.: Analysis of frequency quadrupling using a single Mach–Zehnder modulator for millimeter wave generation and distribution over fiber systems. Opt. Express 16, 10786–10802 (2008)Google Scholar
  107. 107.
    Lin, C.T., Shih, P.T., Jiang, W.J., Chen, J.J., Peng, P.C., Chi, S.: A continuously tunable and filterless optical millimeter wave generation via frequency octupling. Opt. Express 17, 19749–19756 (2009)Google Scholar
  108. 108.
    Ma, J., Yu, J., Yu, C., Xin, X., Sang, X., Zhang, Q.: 64 GHz optical millimeter wave generation by octupling 8 GHz local oscillator via a nested LiNbO3 modulator. Opt. Laser Technol. 42, 264–268 (2010)Google Scholar
  109. 109.
    Chen, Y., Wen, A., Shang, L.: Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators. Opt. Commun. 283, 4933–4941 (2010)Google Scholar
  110. 110.
    Jia, Z., Yu, J., Hsueh, Y.T., Chowdhury, A., Chien, H.C., Buck, J.A., Chang, G.K.: Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60 GHz radio over fiber systems. IEEE Photonics Technol. Lett. 20(17), 1470–1472 (2008)Google Scholar
  111. 111.
    Olmos, J.J.V., Kuri, T., Kitayama, K.: Dynamic reconfigurable WDM 60 GHz millimeter waveband radio over fiber access network: architectural considerations and experiment. J Lightwave Technol. 25, 3374–3380 (2007)Google Scholar
  112. 112.
    Georges, J.B., Cutrer, D.M., Solgaard, O., Lau, K.Y.: Optical transmission of narrowband millimeter wave signals. IEEE Trans. Microw. Theory Tech. 43, 2229–2240 (1995)Google Scholar
  113. 113.
    Li, J., Ning, T., Pei, L., Qi, C., Zhou, Q., Hu, X., Gao, S.: 60 GHz millimeter wave generator based on a frequency quadrupling feed forward modulation technique. Opt. Lett. 35, 3619–3621 (2010)Google Scholar
  114. 114.
    Wang, Q., Rideout, H., Zeng, F., Yao, J.: Millimeter wave frequency tripling based on four wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 18, 2460–2462 (2006)Google Scholar
  115. 115.
    Shih, P.T., Chen, J., Lin, C.T., Jiang, W.J., Huang, H.S., Peng, P.C., Chi, S.: Optical millimeter-wave signal generation via frequency 12 tupling. J. Lightwave Technol. 28, 71–78 (2010)Google Scholar
  116. 116.
    Li, M., Chen, H., Yin, F., Chen, M., Xie, S.: Full-duplex 60 GHz RoF system with optical local oscillating carrier distribution scheme based on FWM effect in SOA. IEEE Photonics Technol. Lett. 21, 1716–1718 (2009)Google Scholar
  117. 117.
    Schneider, T., Junker, M., Lauterbach, K.U.: Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves. JOSA B 23, 1012–1019 (2006)Google Scholar
  118. 118.
    Li, J., Lee, H., Vahala, K.J.: Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013)Google Scholar
  119. 119.
    Martin, E.P., Shao, T., Vujicic, V., Anandarajah, P.M., Browning, C., Llorente, R., Barry, L.P.: 25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser. J. Lightwave Technol. 33(8), 1635–1643 (2015)Google Scholar
  120. 120.
    Zhu, Z., Zhao, S., Li, X., Qu, K., Lin, T.: Filter-free photonic frequency sextupler operated over a wide range of modulation index. Opt. Laser Technol. 90, 144–148 (2017)Google Scholar
  121. 121.
    Muthu, K.E., Raja, A.S., Sevendran, S.: Optical generation of millimeter waves through frequency decupling using DP-MZM with RoF transmission. Opt. Quantum Electron. 49(2), 63 (2017)Google Scholar
  122. 122.
    Zhu, Z., Zhao, S., Li, X., Qu, K., Lin, T.: Photonic generation of frequency-octupled microwave signal with reduced electrical local oscillator power and improved spectrum purity. Opt. Quantum Electron. 49(2), 65 (2017)Google Scholar
  123. 123.
    Long, Y., Zhou, L., Wang, J.: Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator. Sci. Rep. 6, 20215 (2016)Google Scholar
  124. 124.
    Zhu, Z., Zhao, S., Li, Y., Chen, X., Li, X.: A novel scheme for high-quality 120 GHz optical millimeter-wave generation without optical filter. Opt. Laser Technol. 65, 29–35 (2015)Google Scholar
  125. 125.
    Alavi, S.E., Soltanian, M.R., Amiri, I.S., Khalily, M., Supaat, A.S., Ahmad, H.: Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 19891 (2016)Google Scholar
  126. 126.
    Roy, J.N., Rakshit, J.K.: Design of micro ring resonator based all optical logic shifter. Opt. Commun. 312, 73–79 (2014)Google Scholar
  127. 127.
    Amiri, I.S., Hindia, M.N., Reza, A.W., Ahmad, H., Yupapin, P.: LTE smart grid performance gains with additional remote antenna units via radio over fiber using a microring resonator system. Opt. Switch. Netw. 25, 13–23 (2017)Google Scholar
  128. 128.
    Song, S., Yi, X., Chew, S.X., Li, L., Nguyen, L., Zheng, R.: Optical single-sideband modulation based on silicon-on-insulator coupled-resonator optical waveguides. Opt. Eng. 55(3), 031114 (2015)Google Scholar
  129. 129.
    Liu, L., Yang, T., Liao, S., Dong, J.: Photonic generation of millimeter-wave using a silicon microdisk resonator. Opt. Commun. 343, 115–120 (2015)Google Scholar
  130. 130.
    Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave (mmWave) communications for 5G: opportunitios and challenges. Comput. Sci. Netw. Internet Archit. 21(8), 2657–2676 (2015)Google Scholar
  131. 131.
    Chung, D.J., Amadjikpe, A.L., Papapolymrou, J.: 3D integration of a band selective filter and antenna for 60 GHz applications. In: Antennas and Propagation Society International Symposium (APSURSI), pp. 1–4. IEEE (2010)Google Scholar
  132. 132.
    Skubic, B., Bottari, G., Rostami, A., Cavaliere, F., Ohlen, P.: Rethinking optical transport to pave the way for 5G and the networked society. J. Lightwave Technol. 33, 1084–1091 (2015)Google Scholar
  133. 133.
  134. 134.
    Le, B., Tao, T.W.: Integration of Group IV photonic components and other integrated optics and impacts on 5G optical networking. In: 2015 IEEE 12th International Conference on Group IV Photonics (GFP), pp. 108–109. IEEE (2015)Google Scholar
  135. 135.
    Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., Capmany, J.: Integrated microwave photonics. Laser Photonics Rev. 7(4), 506–538 (2013)Google Scholar
  136. 136.
    Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)Google Scholar
  137. 137.
    Smit, M., Leijtens, X., Ambrosius, H., Bente, E., Van der Tol, J., Smalbrugge, B., De Vries, T., Geluk, E.J., Bolk, J., Van Veldhoven, R., Augustin, L.: An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29(8), 083001 (2014)Google Scholar
  138. 138.
    Augustin, L.M., Santos, R., den Haan, E., Kleijn, S., Thijs, P.J., Latkowski, S., Zhao, D., Yao, W., Bolk, J., Ambrosius, H., Mingaleev, S.: InP-based generic foundry platform for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018)Google Scholar
  139. 139.
    Bauters, J.F., Heck, M.J., John, D.D., Barton, J.S., Bruinink, C.M., Leinse, A., Heideman, R.G., Blumenthal, D.J., Bowers, J.E.: Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19(24), 24090–24101 (2011)Google Scholar
  140. 140.
    Capmany, J., Gasulla, I., Pérez, D.: Microwave photonics: the programmable processor. Nat. Photonics 10(1), 6 (2016)Google Scholar
  141. 141.
    Pérez, D., Gasulla, I., Capmany, J.: Software-defined reconfigurable microwave photonics processor. Opt. Express 23(11), 14640–14654 (2015)Google Scholar
  142. 142.
    Zhuang, L., Roeloffzen, C.G., Hoekman, M., Boller, K.J., Lowery, A.J.: Programmable photonic signal processor chip for radiofrequency applications. Optica 2(10), 854–859 (2015)Google Scholar
  143. 143.
    Pérez, D., Gasulla, I., Crudgington, L., Thomson, D.J., Khokhar, A.Z., Li, K., Cao, W., Mashanovich, G.Z., Capmany, J.: Multipurpose silicon photonics signal processor core. Nat. Commun. 8(1), 636 (2015)Google Scholar
  144. 144.
    Zhang, N., Yang, P., Ren, J., Chen, D., Yu, L., Shen, X.: Synergy of big data and 5 g wireless networks: opportunities, approaches, and challenges. IEEE Wirel. Commun. 25(1), 12–18 (2018)Google Scholar
  145. 145.
    Tan, M.R., Rosenberg, P., Sorin, W.V., Wang, B., Mathai, S., Panotopoulos, G., Rankin, G.: Universal photonic interconnect for data centers. J. Lightwave Technol. 36(2), 175–180 (2018)Google Scholar
  146. 146.
    Cheng, Q., Rumley, S., Bahadori, M., Bergman, K.: Photonic switching in high performance datacenters. Opt. Express 26(12), 16022–16043 (2018)Google Scholar
  147. 147.
    Cheng, Q., Bahadori, M., Glick, M., Rumley, S., Bergman, K.: Recent advances in optical technologies for data centers: a review. Optica 5(11), 1354–1370 (2018)Google Scholar
  148. 148.
    Shen, Y., Hattink, M.H., Samadi, P., Cheng, Q., Hu, Z., Gazman, A., Bergman, K.: Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks. Opt. Express 26(8), 10914–10929 (2018)Google Scholar
  149. 149.
  150. 150.
  151. 151.
    Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave cellular wireless networks: potentials and challenges. Proc. IEEE 102, 366–385 (2014)Google Scholar
  152. 152.
    Feng, L., Hu, R.Q., Wang, J., Xu, P., Qian, Y.: Applying VLC in 5G networks: architectures and key technologies. IEEE Netw. 30, 77–83 (2016)Google Scholar
  153. 153.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations