A tunable Mach–Zehnder interferometer based on dual micro-cavity photonic crystal fiber for load measurement

  • Faraqid Q. MohammedEmail author
  • Tahreer S. Mansoor
  • Ahmed W. Abdulwahhab
Original Paper


Optical fiber technologies are widely engaged in variety of industries, machines and production lines due to their precise results and low cost. Optical sensors are fabricated using different types of optical fibers. In this paper, a new fabrication approach of, in-fiber, tunable Mach–Zehnder interferometer with dual micro-cavities using a photonic crystal fiber (PCF) has been proposed for load measurement application. A large mode area (LMA-10) PCF is used to splice between two equal lengths of single-mode fibers using fusion splicing technique. Different parameters such as arc power, length of the PCF and the overlap gap between samples have been considered to control the fabrication process. Ellipsoidal shape micro-cavities were experimentally achieved parallel to the propagation axis having dimensions of (24.92–62.32) µm of width and (3.82–18.2) µm of length. Results showed that higher sensitivity values of 0.15 nm/N and 0.32 nm/N were achieved with elliptical width of 18.2 µm. The simplicity of sensor fabrication process, controlled parameters of cavity creation, small and compact size and high sensitivity of large mode area that the PCFs exhibit, add more advantage for load measurement applications.


Photonic crystal fiber LMA-10 Fusion splicing Fusion splicing MZI 



Funding was provided by University of Baghdad (Grant No. 666).


  1. 1.
    Rong, Q., Sun, H., Qiao, X., Zhang, J., Hu, M., Feng, Z.: A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J. Opt. 14(4), 045002 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhou, A., Qin, B., Zhu, Z., Zhang, Y., Liu, Z., Yang, J., Yuan, L.: Hybrid structure fiber optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature. Opt. Lett. 39(18), 5267–5270 (2014)CrossRefGoogle Scholar
  3. 3.
    Ferreira, M.S., Bierlich, J., Kobelke, J., Schuster, K., Santos, J.L., Frazão, O.: Towards the control of highly sensitive Fabry–Perot strain sensor based on hollow-core ring photonic crystal Fiber. Opt. Express 20(20), 21946–21952 (2012)CrossRefGoogle Scholar
  4. 4.
    Tan, X., Li, X., Geng, Y., Yin, Z., Wang, L., Wang, W., Deng, Y.: Polymer microbubble-based Fabry–Perot fiber interferometer and sensing applications. IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015)CrossRefGoogle Scholar
  5. 5.
    Liao, C.R., Hu, T.Y., Wang, D.N.: Optical fiber Fabry–Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 20(20), 22813–22818 (2012)CrossRefGoogle Scholar
  6. 6.
    Dash, J.N., Jha, R.: Fabry–Perot cavity on demand for hysteresis free interferometric sensors. IEEE J. Lightwave Technol. 34, 3188–3193 (2016)CrossRefGoogle Scholar
  7. 7.
    Dong, X., Du, H., Sun, X., Luo, Z., Duan, J.: A novel strain sensor with large measurement range based on all fiber Mach–Zehnder interferometer. Sens. J. (Basel) 18(5), 1549 (2018)CrossRefGoogle Scholar
  8. 8.
    Dong, X., Du, H., Luo, Z., Duan, J.: Highly sensitive strain sensor based on a novel Mach–Zehnder interferometer with TCF–PCF structure. Sens. (Basel) 18(1), 278 (2018)CrossRefGoogle Scholar
  9. 9.
    Zheng, J., Yan, P., Yu, Y., Ou, Z., Wang, J., Chen, X., Du, C.: Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer. J. Opt. Commun. 297, 7–11 (2013)CrossRefGoogle Scholar
  10. 10.
    Liu, S., Yang, K., Wang, Y., Qu, J., Liao, C., He, J., Li, Z., Yin, G., Sun, B., Zhou, J.: High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 5, 7624 (2015)CrossRefGoogle Scholar
  11. 11.
    Hou, M., Wang, Y., Liu, S., Li, Z., Lu, P.: Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing. IEEE Sens. J. 16, 6192–6196 (2016)CrossRefGoogle Scholar
  12. 12.
    Hu, L.M., Chan, C.C., Dong, X.Y., Wang, Y.P., Zu, P., Wong, W.C., Qian, W.W., Li, T.: Photonic crystal fiber strains sensor based on modified Mach-Zehnder interferometer. IEEE Photonics J. 4, 114–118 (2012)CrossRefGoogle Scholar
  13. 13.
    Domingues, M.F., Rodriguez, C.A., Martin, J., Tavares, C., Marques, C., Alberto, N., André, P., Antunes, P.: Cost-effective optical fiber pressure sensor based on intrinsic Fabry–Perot interferometric micro-cavities. Opt. Fiber Technol. J. 42, 56–62 (2018)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Wang, S., Jiang, L., Huang, H., Zhang, L., Wang, P., Lv, L., Cao, Z.: Temperature-insensitive refractive index sensor based on Mach–Zehnder interferometer with two microcavities. Opt. Lett. 15(2), 020603 (2017)CrossRefGoogle Scholar
  15. 15.
    Vazquez, D., Ayala, J.M., Laguna, R.R., Rodriguez, E., Hernandez, J.M., Garcia, J.C., Chavez, R.I.: An all fiber intrinsic Fabry–Perot interferometer based on an air-microcavity. Sensors 13, 6355–6364 (2013)CrossRefGoogle Scholar
  16. 16.
    Vazquez, D., Dieguez, Y., Hernandez, J.M., Maciel, M., Rodriguez, E., Laguna, R., Ayala, J.M.: Modified all-fiber Fabry–Perot interferometer and its refractive index, load, and temperature analyses. IEEE Photonics J. 7(3), 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    Fujikura. Technical Datasheet: Fujikura (FSM-60S) Specialty Arc Fusion Splicer Manual. Technical report, Fujikura Corporation (2012)Google Scholar
  18. 18.
    Favero, F.C., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Fabry Perot interferometers built by photonic crystal fiber pressurization during fusion splicing. Opt. Lett. 36, 4191–4193 (2011)CrossRefGoogle Scholar
  19. 19.
    Adnan, S.A., Abdulwahhab, A.W., Ismail, S.N.: Fusion splicing: the penalty of increasing the collapse length of the air holes in ESM-12B photonic crystal fibers. Opt. Appl. 46(2), 265–275 (2016)Google Scholar
  20. 20.
    Xiaopei, C., Fabin, S., Zhuang, W., Zhenyu, H., Wang, A.: Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor. Appl. Opt. 45, 7760–7766 (2006)CrossRefGoogle Scholar
  21. 21.
    Manders, M., Partridge, M., Correia, R.N., James, S.W., Tatam, R.P.: Transverse strain response of in-fiber Fabry–Perot microcavities. Proc. SPIE 9157, 91571O (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Sun, S., Li, M., Zhu, N.: All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity. J. Semicond. 38(12), 126001 (2017)CrossRefGoogle Scholar
  23. 23.
    Favero, F.C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 20(7), 7112 (2012)CrossRefGoogle Scholar
  24. 24.
    Manders, M.: Interferometric fiber optic sensors incorporating photonic crystal fiber for measurement of strain and load. Cranfield University, M.Sc thesis (2016)Google Scholar
  25. 25.
    Favero, F.C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 20(7), 7112 (2012)CrossRefGoogle Scholar
  26. 26.
    Dash, J.N., Jha, R.: Fabrication of inline micro air cavity with choice based dimensions. IEEE Photonic Technol. Lett. 1135(c), 28–31 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Faraqid Q. Mohammed
    • 1
    Email author
  • Tahreer S. Mansoor
    • 1
  • Ahmed W. Abdulwahhab
    • 2
  1. 1.Institute of Laser for Postgraduate StudiesUniversity of BaghdadBaghdadIraq
  2. 2.Laser and Optoelectronics Engineering DepartmentUniversity of TechnologyBaghdadIraq

Personalised recommendations