Advertisement

Photonic Network Communications

, Volume 38, Issue 2, pp 244–249 | Cite as

A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs

  • Aravindhan Surendar
  • Mehrnoush AsghariEmail author
  • Farhad Mehdizadeh
Original Paper

Abstract

All-optical comparators play crucial roles in all-optical data processing systems. In this paper, we proposed a novel structure for realizing an all-optical comparator, which can compare two 1-bit binary codes. For this purpose, we used three nonlinear resonant rings. The final structure has two input and three output ports. The maximum rise and fall times for the proposed structure are about 1.5 and 2 ps, respectively.

Keywords

Photonic crystal Optical comparator Ring resonators Kerr effect 

Notes

References

  1. 1.
    Hall, K.L., Rauschenbach, K.A.: All-optical bit pattern generation and matching at 10 Gbit/s. Electron. Lett. 32, 1214 (2002)CrossRefGoogle Scholar
  2. 2.
    Martinez, J.M., Herrera, J., Ramos, F., Marti, J.: All-optical address recognition scheme for label-swapping networks. IEEE Photonics Tech. Lett. 18, 151–153 (2006)CrossRefGoogle Scholar
  3. 3.
    Lu, C., Hu, X., Yang, H., Gong, Q.: Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci. Rep. 4, 3869 (2014)CrossRefGoogle Scholar
  4. 4.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 127, 8706–8709 (2016)CrossRefGoogle Scholar
  5. 5.
    Roshan Entezar, S.: Photonic crystal wedge as a tunable multichannel filter. Superlattices Microstruct. 82, 33–39 (2015)CrossRefGoogle Scholar
  6. 6.
    Medhekar, S., Paltani, P.P.: All optical switching and tunable wavelength filtering in grating assisted. Nonlinear Opt. Quantum Opt. 36, 81–90 (2007)Google Scholar
  7. 7.
    Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)CrossRefGoogle Scholar
  8. 8.
    Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 124, 5923–5926 (2013)CrossRefGoogle Scholar
  9. 9.
    Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)CrossRefGoogle Scholar
  10. 10.
    Park, I., Lee, H.-S., Kim, H.-J., Moon, K.-M., Lee, S.-G., Beom-Hoan, O., Park, S.-G., Lee, E.-H.: Photonic crystal power-splitter based on directional coupling. Opt. Express 12, 3599 (2004)CrossRefGoogle Scholar
  11. 11.
    Afzal, S., Ahmadi, V., Ebnali-Heidari, M.: All-optical tunable photonic crystal nor gate based on the nonlinear Kerr effect in a silicon nanocavity. J. Opt. Soc. Am. B. 30, 2535–2539 (2013)CrossRefGoogle Scholar
  12. 12.
    Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)CrossRefGoogle Scholar
  13. 13.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)CrossRefGoogle Scholar
  14. 14.
    Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016)CrossRefGoogle Scholar
  15. 15.
    Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRefGoogle Scholar
  16. 16.
    Salmanpour, A., Mohammadnejad, S., Bahrami, A.: Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47, 2249–2275 (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)CrossRefGoogle Scholar
  18. 18.
    D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)CrossRefGoogle Scholar
  19. 19.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-Dimens. Syst. Nanostruct. 75, 77–85 (2016)CrossRefGoogle Scholar
  20. 20.
    Chung, L.-W., Lee, S.-L.: Multimode-interference-based broad-band demultiplexers with internal photonic crystals. Opt. Express 14, 4923 (2006)CrossRefGoogle Scholar
  21. 21.
    Tang, C., Dou, X., Lin, Y., Yin, H., Wu, B., Zhao, Q.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 316, 49–55 (2014)CrossRefGoogle Scholar
  22. 22.
    Soldano, L.B., Pennings, E.C.M.: Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615–627 (1995)CrossRefGoogle Scholar
  23. 23.
    haq Shaik, E., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)CrossRefGoogle Scholar
  24. 24.
    Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)CrossRefGoogle Scholar
  25. 25.
    Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal and gate using nonlinear Kerr effect. Opt. Quantum Electron. 44, 27–34 (2012)CrossRefGoogle Scholar
  26. 26.
    Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quantum Electron. 47, 3689–3703 (2015)CrossRefzbMATHGoogle Scholar
  27. 27.
    Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron. Opt. 126, 2368–2372 (2015)CrossRefGoogle Scholar
  28. 28.
    Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)CrossRefGoogle Scholar
  29. 29.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)CrossRefGoogle Scholar
  30. 30.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)CrossRefGoogle Scholar
  31. 31.
    Gupta, M.M., Medhekar, S.: All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Opt. Int. J. Light Electron. Opt. 127, 1221–1228 (2016)CrossRefGoogle Scholar
  32. 32.
    Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006)CrossRefGoogle Scholar
  33. 33.
    Gupta, M.M., Medhekar, S.: All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Optik (Stuttg) 127, 1221–1228 (2016)CrossRefGoogle Scholar
  34. 34.
    Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik (Stuttg) 124, 2639–2644 (2013)CrossRefGoogle Scholar
  35. 35.
    Jung, Y.J., Yu, S., Koo, S., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on Lasers and Electro-Optics/Pacific Rim. p. TuB4_3. Optical Society of America (2009)Google Scholar
  36. 36.
    Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007)CrossRefGoogle Scholar
  37. 37.
    Seif-Dargahi, H., Zavvari, M., Alipour-Banaei, H.: Very compact photonic crystal resonant cavity for all optical filtering. J. Theor. Appl. Phys. 8, 183–188 (2014)CrossRefGoogle Scholar
  38. 38.
    Zamani, M.: Photonic crystal-based optical filters for operating in second and third optical fiber windows. Superlattices Microstruct. 92, 157–165 (2016)CrossRefGoogle Scholar
  39. 39.
    Tavousi, A., Mansouri-Birjandi, M.A.: Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers. Photonic Netw. Commun. 32, 160–170 (2016)CrossRefGoogle Scholar
  40. 40.
    Taalbi, A., Bassou, G., Youcef Mahmoud, M.: New design of channel drop filters based on photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 124, 824–827 (2013)CrossRefGoogle Scholar
  41. 41.
    Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Opt. Int. J. Light Electron. Opt. 124, 2966–2968 (2013)CrossRefGoogle Scholar
  42. 42.
    Saghirzadeh Darki, B., Granpayeh, N.: Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun. 283, 4099–4103 (2010)CrossRefGoogle Scholar
  43. 43.
    Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron. Opt. 124, 2864–2867 (2013)CrossRefGoogle Scholar
  44. 44.
    Youcef Mahmoud, M., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. Int. J. Light Electron. Opt. 125, 4718–4721 (2014)CrossRefGoogle Scholar
  45. 45.
    Youcef Mahmoud, M., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)CrossRefGoogle Scholar
  46. 46.
    Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostruct. Fund. Appl. 21, 44–51 (2016)CrossRefGoogle Scholar
  47. 47.
    Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1613–1625 (2015)CrossRefGoogle Scholar
  48. 48.
    Alipour-Banaei, H., Mehdizadeh, F.: High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun. 33, 152–158 (2017)CrossRefGoogle Scholar
  49. 49.
    Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. 35, 245–250 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aravindhan Surendar
    • 1
  • Mehrnoush Asghari
    • 2
    Email author
  • Farhad Mehdizadeh
    • 3
  1. 1.School of ElectronicsVignan Foundation for Science, Technology and ResearchGunturIndia
  2. 2.Young Researchers and Elite Club, West Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Afagh Higher Education InstituteUrmiaIran

Personalised recommendations