Advertisement

Photonic Network Communications

, Volume 38, Issue 2, pp 231–243 | Cite as

Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata

  • Ali Norouzi
  • Saeed Rasouli HeikalabadEmail author
Original Paper
  • 18 Downloads

Abstract

Complementary metal-oxide semiconductor (CMOS) technology may face so much problems in future due to the smaller size of transistors and increase in circuits’ volume and chips temperature. A new technology that can be a good alternative to CMOS circuits is quantum-dot cellular automata (QCA). These technologies have features such as a very low power consumption, high speed and small dimensions. In nano-communication system, error detection and correction in a receiver message are major factors. In addition, circuit reversibility in QCA helps designs a lot. In this research, generator and checker circuit of the reversible parity and eventually their nano-communication system are designed reversible using odd parity bit. The proposed circuits and the theoretical values are tested by QCADesigner 2.0.3 simulator to show the correct operation of the circuits. According to the simulation results, the proposed circuits compared with the previous structure improve delay by 90–75–35% in generator and checker structures of parity and their reversibility of nano-communication system, respectively. The proposed circuits are used in nano-transmitters and nano-receivers.

Keywords

Nano-communication system Quantum-dot cellular automata Parity generator Parity checker Reversible 

Notes

References

  1. 1.
    Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017)CrossRefGoogle Scholar
  2. 2.
    Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Netw. (2017).  https://doi.org/10.1016/j.nancom.2017.09.002 Google Scholar
  3. 3.
    Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)CrossRefGoogle Scholar
  4. 4.
    Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018).  https://doi.org/10.1016/j.mee.2018.01.019 CrossRefGoogle Scholar
  5. 5.
    Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Midpoint memory: a special memory structure for data-oriented models implementation. J. Circuits Syst. Comput. 24(5), 1550063 (2015)CrossRefGoogle Scholar
  6. 6.
    Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)CrossRefGoogle Scholar
  7. 7.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRefGoogle Scholar
  8. 8.
    Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  9. 9.
    Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt. Int. J. Light Electron Opt. 130, 981–989 (2017).  https://doi.org/10.1016/j.ijleo.2016.11.087 CrossRefGoogle Scholar
  10. 10.
    Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. (2016).  https://doi.org/10.1016/j.spmi.2016.08.054 Google Scholar
  11. 11.
    Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. (2017).  https://doi.org/10.1007/s00542-017-3502-x Google Scholar
  12. 12.
    Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without crosswiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. (2017).  https://doi.org/10.1007/s11227-017-2206-4 Google Scholar
  13. 13.
    Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2848 (2017).  https://doi.org/10.1007/s10773-017-3453-0 CrossRefzbMATHGoogle Scholar
  14. 14.
    Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990 (2017).  https://doi.org/10.1007/s10773-017-3466-8 CrossRefzbMATHGoogle Scholar
  15. 15.
    Sadoghifar, A., Heikalabad, S.R.: A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B Condens. Matter 537, 202–206 (2018).  https://doi.org/10.1016/j.physb.2018.02.024 CrossRefGoogle Scholar
  16. 16.
    Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum dot cellular automata to create a revolution. Physica B Condens. Matter 512, 91–99 (2017).  https://doi.org/10.1016/j.physb.2017.02.028 CrossRefGoogle Scholar
  17. 17.
    Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs (2018)Google Scholar
  18. 18.
    Salimzadeh, F., Heikalabad, S.R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Physica B Phys. Condens. Matter (2018).  https://doi.org/10.1016/j.physb.2018.12.028 Google Scholar
  19. 19.
    Heikalabad, S.R., Gadim, M.R.: Design of improved arithmetic logic unit in quantum-dot cellular automata. Int. J. Theor. Phys. 57(6), 1733–1747 (2018).  https://doi.org/10.1007/s10773-018-3699-1 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kamrani, S., Heikalabad, S.R.: A unique reversible gate in quantum-dot cellular automata for implementation of four flip-flops without garbage outputs. Int. J. Theor. Phys. 57(11), 3340–3358 (2018).  https://doi.org/10.1007/s10773-018-3847-7 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ahmadpour, S.S., Mosleh, M., Heikalabad, S.R.: A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Physica B 550, 383–392 (2018).  https://doi.org/10.1016/j.physb.2018.09.029 CrossRefGoogle Scholar
  22. 22.
    Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)CrossRefGoogle Scholar
  23. 23.
    Silva, D.S., Sardinha, L.H.B., Vieira, M.A.M., Vieira, L.F.M., Vilela Neto, O.P.: Robust serial nanocommunication with QCA. IEEE Trans. Nanotechnol. 14(3), 464–472 (2015)CrossRefGoogle Scholar
  24. 24.
    Das, J.C., De, D.: Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front. Inf. Technol. Electron. Eng. 17(3), 224–236 (2016)CrossRefGoogle Scholar
  25. 25.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)CrossRefGoogle Scholar
  27. 27.
    Mano, M., Ciletti, M.D.: Digital Design, vol. 4. Prentice Hall, Upper Saddle River (2006)Google Scholar
  28. 28.
    Liu, W., Srivastava, S., Lu, L., Orneill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11(6), 1239–1251 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations