Photonic Network Communications

, Volume 38, Issue 2, pp 280–288 | Cite as

MEMS tunable SOI waveguide Bragg grating filter with 1.3 THz tuning range for C-band 100 GHz DWDM optical network

  • U. Poorna Lakshmi
  • M. Balasubramanian
  • K. Narayan
  • Prasant Kumar PattnaikEmail author
Original Paper


A MEMS tunable integrated waveguide Bragg grating-based filter for C-band optical dense wavelength-division multiplexing (DWDM) network is presented and analyzed in this work. Waveguide Bragg grating being a notch filter in the transmission spectrum is used to realize a tunable filter by varying the applied voltages to the fixed–fixed beam loaded with this grating. The strain across the grating is enhanced by choosing MEMS beam configuration such that the metal electrode is the bottom-most layer of the composite fixed–fixed beam. Device dimensions are chosen to achieve a narrow full width half maximum of 0.77 nm, allowing filtering of adjacent channels of 100 GHz DWDM network. A large Bragg wavelength shift of 10.4 nm (1552.52–1562.92 nm) was achieved at 45.8 V actuation providing tuning for 14 DWDM channels with inter-channel cross talk below − 21 dB, with tuning range of 1.3 THz.


DWDM optical network Fixed–fixed beam MEMS Silicon on insulator (SOI) Tunable filter Waveguide Bragg grating 



One of the authors Prasant Kumar Pattnaik would like to thank BITS Pilani for supporting this work through Grant BITS/OPERA/475.


  1. 1.
    Dong, P.: Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 22(6), 370 (2016)CrossRefGoogle Scholar
  2. 2.
    Kobayashi, N., Sato, K., Namiwaka, M., Yamamoto, K., Watanabe, S., Kita, T., Yamada, H., Yamazaki, H.: Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. IEEE J. Lightwave Technol. 33(6), 1241 (2015)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Doerr, C.R., Dong, P., Chen, Yk: Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt. Express 19(26), B946 (2011)CrossRefGoogle Scholar
  4. 4.
    Mansoor, R.D., Sasse, H., Al-Asadi, M., Ison, S.J., Duffy, A.P.: Estimation of the bandwidth of acceptable crosstalk of parallel coupled ring resonator add/drop filters. IEEE Trans. Electromagn. Compat. 57(5), 1005 (2015)CrossRefGoogle Scholar
  5. 5.
    Orlandi, P., Morichetti, F., Strain, M.J., Sorel, M., Bassi, P., Melloni, A.: Photonic integrated filter with widely tunable bandwidth. IEEE J. Lightwave Technol. 32(5), 897 (2014)CrossRefGoogle Scholar
  6. 6.
    Ding, Y., Pu, M., Liu, L., Xu, J., Peucheret, C., Zhang, X., Huang, D., Ou, H.: Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-mzi structure. Opt. Express 19(7), 6462 (2011)CrossRefGoogle Scholar
  7. 7.
    Giuntoni, I., Gajda, A., Krause, M., Steingrüber, R., Bruns, J., Petermann, K.: Tunable Bragg reflectors on silicon-on-insulator rib waveguides. Opt. Express 17(21), 18518 (2009)CrossRefGoogle Scholar
  8. 8.
    LaRochelle, S., Simard, A.D.: In: Optical Fiber Communication Conference (Optical Society of America, 2017), p. Th1G–3Google Scholar
  9. 9.
    Poornalakshmi, U., Agarwal, S., Balasubramanian, M., Pattnaik, P.K.: In: 11th IEEE Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 2, pp. 1–2 (2015)Google Scholar
  10. 10.
    Lakshmi, U.P., Balasubramanian, M., Narayan, K., Pattnaik, P.K.: In: IEEE International Conference on Microwave, Optical and Communication Engineering (ICMOCE), pp. 49–51 (2015)Google Scholar
  11. 11.
    Balasubramanian, M., Poornalakshmi, U., Agarwal, S., Pattnaik, P.K.: In: 2015 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, pp. 1–2 (2015)Google Scholar
  12. 12.
    Zhao, M.F., Wang, S.F., Luo, B.B., Zhong, N.B., Cao, X.M.: In: 2010 Symposium on Photonics and Optoelectronic (SOPO). IEEE, pp. 1–4 (2010)Google Scholar
  13. 13.
    Takayesu, J., Hochberg, M., Baehr-Jones, T., Chan, E., Wang, G., Sullivan, P., Liao, Y., Davies, J., Dalton, L., Scherer, A., et al.: A hybrid electrooptic microring resonator-based roadm for wafer scale optical interconnects. IEEE J. Lightwave Technol. 27(4), 440 (2009)CrossRefGoogle Scholar
  14. 14.
    Tsarev, A., Kolosovsky, E.: In: IEEE Ultrasonics Symposium, vol. 1, pp. 64–67 (2004)Google Scholar
  15. 15.
    Passaro, V.M., Tsarev, A.V., De Leonardis, F.: Wavelength interrogator for optical sensors based on a novel thermo-optic tunable filter in soi. IEEE J. Lightwave Technol. 30(13), 2143 (2012)CrossRefGoogle Scholar
  16. 16.
    Wu, M.C., Solgaard, O., Ford, J.E.: Optical mems for lightwave communication. IEEE J. Lightwave Technol. 24(12), 4433 (2006)CrossRefGoogle Scholar
  17. 17.
    Venkateshkanna, T., Wilson, K.: IEEE International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), pp. 455–464 (2012)Google Scholar
  18. 18.
    Lin, L.Y., Goldstein, E.L.: Opportunities and challenges for mems in lightwave communications. IEEE J. Sel. Top. Quantum Electron. 8(1), 163 (2002)CrossRefGoogle Scholar
  19. 19.
    Fang, Q., Song, J., Tu, X., Jia, L., Luo, X., Yu, M., Lo, G.: In: Optical Fiber Communication Conference (Optical Society of America), p. OTu3C–8 (2013)Google Scholar
  20. 20.
    Bitauld, D., Zaquine, I., Maruani, A., Frey, R.: In: IEEE Conference on Lasers and Electro-Optics Europe, CLEO/Europe. IEEE, p. 498 (2005)Google Scholar
  21. 21.
    Honda, S., Wu, Z., Matsui, J., Utaka, K., Edura, T., Tokuda, M., Tsutsui, K., Wada, Y.: Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE. Electron. Lett. 43(11), 630 (2007)CrossRefGoogle Scholar
  22. 22.
    Homampour, S., Bulk, M.P., Jessop, P.E., Knights, A.P.: Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides. Phys. Status Solidi (c) 6(S1), S240 (2009). CrossRefGoogle Scholar
  23. 23.
    Kafumbe, S., Danthakani, R., Abd-Elrady, E., Alqudah, M., Harris, A., Burdess, J.: In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM). IEEE, pp. 1–7 (2015)Google Scholar
  24. 24.
    Lou, F.: Design, fabrication and characterization of plasmonic components based on silicon nanowire platform. Ph.D. thesis, KTH Royal Institute of Technology (2014)Google Scholar
  25. 25.
    Wiesmann, D., David, C., Germann, R., Emi, D., Bona, G.: Apodized surface-corrugated gratings with varying duty cycles. IEEE Photon. Technol. Lett. 12(6), 639 (2000)CrossRefGoogle Scholar
  26. 26.
    Aalto, T.: Microphotonic silicon waveguide components. Ph.D. thesis, VTT Technical Research Centre of Finland (2004)Google Scholar
  27. 27.
    Soref, R.A., Schmidtchen, J., Petermann, K.: Large single-mode rib waveguides in GeSi-Si and Si-on-Sio/sub 2. IEEE J. Quantum Electron. 27(8), 1971 (1991)CrossRefGoogle Scholar
  28. 28.
    Ak, C., Yildiz, A.: An inversely designed model for calculating pull-in limit and position of electrostatic fixed-fixed beam actuators. Math. Probl. Eng. 2014, 391942 (2014). CrossRefGoogle Scholar
  29. 29.
    Yu, S., Li, L., Lyu, X., Zhang, W.: Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6, 20399 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringBITS-PilaniHyderabadIndia
  2. 2.Department of Electronics and Communication EngineeringSai Vidya Institute of TechnologyBangaloreIndia

Personalised recommendations