Advertisement

Photonic Network Communications

, Volume 38, Issue 2, pp 258–269 | Cite as

Adaptive learning architecture-based predistorter for nonlinear VLC system

  • Parag AggarwalEmail author
  • Tanay Kabra
  • Rizwana Ahmad
  • Vivek Ashok Bohara
  • Anand Srivastava
Original Paper

Abstract

A light-emitting diode (LED) acts as a transmitter in a visible-light communication (VLC) system. However, the nonlinear characteristics of LED limit the performance of the VLC system by degrading the quality of a transmitted signal. In recent years, several forms of predistorters have been proposed to mitigate the effects of LED nonlinearity; however, none of them have been able to approach the performance of a linear VLC system. In this paper, we propose an adaptive learning architecture (ALA)-based predistortion technique to estimate and compensate for LED nonlinearities in a VLC system. A DC-biased optical orthogonal frequency division multiplexing signal is considered. The performance with and without predistorter is analyzed assuming optical channel. It is shown that degradation due to LED nonlinearity can be compensated by using ALA-based predistortion, and the overall predistorter–LED system is able to approach near-linear performance. Further, the proposed predistorter architecture is also able to track the variations in LED nonlinearity and compensate them. Simulation results based on error vector magnitude, symbol error rate, amplitude distortion (AM/AM) curves and constellation plots validate the performance of our proposed technique.

Keywords

LED nonlinearity Predistorter Adaptive learning architecture DCO-OFDM Optical channel 

Notes

References

  1. 1.
    Komine, T., Nakagawa, M.: Integrated system of white LED visible-light communication and power-line communication. IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).  https://doi.org/10.1109/TCE.2003.1205458 CrossRefGoogle Scholar
  2. 2.
    Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).  https://doi.org/10.1109/TCE.2004.1277847 CrossRefGoogle Scholar
  3. 3.
    Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011).  https://doi.org/10.1109/MCOM.2011.6011734 CrossRefGoogle Scholar
  4. 4.
    Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: Led based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015)CrossRefGoogle Scholar
  5. 5.
    Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015)CrossRefGoogle Scholar
  6. 6.
    Elgala, H., Mesleh, R., Haas, H., Pricope, B.: OFDM visible light wireless communication based on white LEDs. In: 2007 IEEE 65th Vehicular Technology Conference—VTC2007-Spring, pp. 2185–2189 (2007).  https://doi.org/10.1109/VETECS.2007.451
  7. 7.
    Armstrong, J., Lowery, A.J.: Power efficient optical OFDM. Electron. Lett. 42(6), 370–372 (2006).  https://doi.org/10.1049/el:20063636 CrossRefGoogle Scholar
  8. 8.
    Armstrong, J.: OFDM for optical communications. J. Lightwave Technol. 27(3), 189–204 (2009).  https://doi.org/10.1109/JLT.2008.2010061 CrossRefGoogle Scholar
  9. 9.
    Hranilovic, S.: On the design of bandwidth efficient signalling for indoor wireless optical channels. Int. J. Commun. Syst. 18(3), 205–228 (2005).  https://doi.org/10.1002/dac.700 CrossRefGoogle Scholar
  10. 10.
    Gonzlez, O., Prez-Jimnez, R., Rodrguez, S., Rabadn, J., Ayala, A.: Adaptive OFDM system for communications over the indoor wireless optical channel. IEE Proc. Optoelectron. 153, 139–144(5) (2006). http://digital-library.theiet.org/content/journals/10.1049/ip-opt_20050081
  11. 11.
    Yu, Z., Baxley, R.J., Zhou, G.T.: EVM and achievable data rate analysis of clipped OFDM signals in visible light communication. EURASIP J. Wirel. Commun. Netw. 2012(1), 321 (2012).  https://doi.org/10.1186/1687-1499-2012-321 CrossRefGoogle Scholar
  12. 12.
    Elgala, H., Mesleh, R., Haas, H.: A study of LED nonlinearity effects on optical wireless transmission using OFDM. In: 2009 IFIP International Conference on Wireless and Optical Communications Networks, pp. 1–5 (2009).  https://doi.org/10.1109/WOCN.2009.5010576
  13. 13.
    Neokosmidis, I., Kamalakis, T., Walewski, J.W., Inan, B., Sphicopoulos, T.: Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach. J. Lightwave Technol. 27(22), 4970–4978 (2009).  https://doi.org/10.1109/JLT.2009.2028903 CrossRefGoogle Scholar
  14. 14.
    Elgala, H., Mesleh, R., Haas, H.: Impact of LED nonlinearities on optical wireless OFDM systems. In: 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 634–638 (2010).  https://doi.org/10.1109/PIMRC.2010.5671734
  15. 15.
    Dimitrov, S., Sinanovic, S., Haas, H.: Clipping noise in OFDM-based optical wireless communication systems. IEEE Trans. Commun. 60(4), 1072–1081 (2012).  https://doi.org/10.1109/TCOMM.2012.022712.100493 CrossRefGoogle Scholar
  16. 16.
    Dimitrov, S., Sinanovic, S., Haas, H.: Signal shaping and modulation for optical wireless communication. J. Lightwave Technol. 30(9), 1319–1328 (2012).  https://doi.org/10.1109/JLT.2012.2188376 CrossRefGoogle Scholar
  17. 17.
    Tsonev, D., Sinanovic, S., Haas, H.: Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. J. Lightwave Technol. 31(18), 3064–3076 (2013).  https://doi.org/10.1109/JLT.2013.2278675 CrossRefGoogle Scholar
  18. 18.
    Elgala, H., Mesleh, R., Haas, H.: Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs. Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).  https://doi.org/10.1504/IJUWBCS.2009.029003. http://www.inderscienceonline.com/doi/abs/10.1504/IJUWBCS.2009.029003
  19. 19.
    Elgala, H., Mesleh, R., Haas, H.: Predistortion in optical wireless transmission using OFDM. In: 2009 9th International Conference on Hybrid Intelligent Systems, vol. 2, pp. 184–189 (2009).  https://doi.org/10.1109/HIS.2009.321
  20. 20.
    Mesleh, R., Elgala, H., Haas, H.: Led nonlinearity mitigation techniques in optical wireless OFDM communication systems. IEEE/OSA J. Opt. Commun. Netw. 4(11), 865–875 (2012).  https://doi.org/10.1364/JOCN.4.000865 CrossRefGoogle Scholar
  21. 21.
    Ying, K., Yu, Z., Baxley, R.J., Qian, H., Chang, G.K., Zhou, G.T.: Nonlinear distortion mitigation in visible light communications. IEEE Wirel. Commun. 22(2), 36–45 (2015).  https://doi.org/10.1109/MWC.2015.7096283 CrossRefGoogle Scholar
  22. 22.
    Kim, J.K., Hyun, K., Park, S.K.: Adaptive predistorter using NLMS algorithm for nonlinear compensation in visible-light communication system. Electron. Lett. 50(20), 1457–1459 (2014).  https://doi.org/10.1049/el.2014.1835 CrossRefGoogle Scholar
  23. 23.
    Mitra, R., Bhatia, V.: Chebyshev polynomial-based adaptive predistorter for nonlinear LED compensation in VLC. IEEE Photon. Technol. Lett. 28(10), 1053–1056 (2016).  https://doi.org/10.1109/LPT.2016.2528168 CrossRefGoogle Scholar
  24. 24.
    Mitra, R., Bhatia, V.: Precoded Chebyshev-NLMS-based pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans. Commun. 65(11), 4845–4856 (2017).  https://doi.org/10.1109/TCOMM.2017.2736548 CrossRefGoogle Scholar
  25. 25.
    Qian, H., Yao, S.J., Cai, S.Z., Zhou, T.: Adaptive postdistortion for nonlinear leds in visible light communications. IEEE Photonics J. 6(4), 1–8 (2014).  https://doi.org/10.1109/JPHOT.2014.2331242 CrossRefGoogle Scholar
  26. 26.
    Ding, L., Zhou, G.T., Morgan, D.R., Ma, Z., Kenney, J.S., Kim, J., Giardina, C.R.: A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004).  https://doi.org/10.1109/TCOMM.2003.822188 CrossRefGoogle Scholar
  27. 27.
    Lee, T.P.: The nonlinearity of double-heterostructure LED’s for optical communications. Proc. IEEE 65(9), 1408–1410 (1977).  https://doi.org/10.1109/PROC.1977.10728 CrossRefGoogle Scholar
  28. 28.
    Aggarwal, P., Ahmad, R., Bohara, V.A., Srivastava, A.: Adaptive predistortion technique for nonlinear LED with dimming control in VLC system. In: 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6 (2017).  https://doi.org/10.1109/ANTS.2017.8384165
  29. 29.
    Arnon, S.: Visible Light Communication. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  30. 30.
    Barros, D.J.F., Wilson, S.K., Kahn, J.M.: Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans. Commun. 60(1), 153–163 (2012).  https://doi.org/10.1109/TCOMM.2011.112311.100538 CrossRefGoogle Scholar
  31. 31.
    Armstrong, J., Schmidt, B.J.C.: Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun. Lett. 12(5), 343–345 (2008).  https://doi.org/10.1109/LCOMM.2008.080193 CrossRefGoogle Scholar
  32. 32.
    Barry, J.R., Kahn, J.M., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993)CrossRefGoogle Scholar
  33. 33.
    Komine, T., Nakagawa, M.: Performance evaluation of visible-light wireless communication system using white led lightings. In: Proceedings of 9th International Symposium on Computers and Communications, 2004, ISCC 2004, vol. 1, pp. 258–263. IEEE (2004)Google Scholar
  34. 34.
    Inan, B., Lee, S.C.J., Randel, S., Neokosmidis, I., Koonen, A.M.J., Walewski, J.W.: Impact of LED nonlinearity on discrete multitone modulation. IEEE/OSA J. Opt. Commun. Netw. 1(5), 439–451 (2009).  https://doi.org/10.1364/JOCN.1.000439 CrossRefGoogle Scholar
  35. 35.
    Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 2006 International Conference on Electrical and Computer Engineering, pp. 408–411 (2006).  https://doi.org/10.1109/ICECE.2006.355657
  36. 36.
    Wu, L., Zhang, Z., Dang, J., Liu, H.: Adaptive modulation schemes for visible light communications. J. Lightwave Technol. 33(1), 117–125 (2015)CrossRefGoogle Scholar
  37. 37.
    Afgani, M.Z., Haas, H., Elgala, H., Knipp, D.: Visible light communication using OFDM. In: 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006, pp. 6–134 (2006).  https://doi.org/10.1109/TRIDNT.2006.1649137
  38. 38.
    Schulze, H.: Frequency-domain simulation of the indoor wireless optical communication channel. IEEE Trans. Commun. 64(6), 2551–2562 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indraprastha Institute of Information Technology (IIIT-Delhi) DelhiNew DelhiIndia

Personalised recommendations