Photonic Network Communications

, Volume 38, Issue 2, pp 219–230 | Cite as

Compact electro-optical programmable logic device based on graphene–silicon switches

  • Hossein Zivarian
  • Abbas ZarifkarEmail author
Original Paper


A compact electro-optical programmable logic device (PLD) which can provide any of 16 possible minterms of four Boolean variables on an optical signal is demonstrated in this paper. The presented structure is based on electro-optical graphene–silicon switches that consist of a Mach–Zehnder interferometer in which a few-layer graphene is embedded in silicon slot waveguide to construct phase shifters. A large effective index variation can be achieved by embedding few-layer graphene inside the slot waveguide which enables us to have a compact footprint. Our analysis shows that the presented PLD has a small footprint of 1.86 × 1.28 mm2. Any combinational logic circuit can be implemented by programming the proposed PLD. Here, the presented structure is programmed to work under three different modes including logical operations, two-bit adder, and two-bit comparator with the advantage of very fast switching among operation modes. Comparison with previous works shows that our design has a compact footprint, high extinction ratio, and low insertion loss with broadband spectrum for wideband telecommunication.


Electro-optical switch Few-layer graphene Graphene–silicon slot waveguide Mach–Zehnder interferometer Programmable logic device (PLD) 



  1. 1.
    Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010)CrossRefGoogle Scholar
  2. 2.
    Assefa, S., Xia, F., Vlasov, Y.A.: Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010)CrossRefGoogle Scholar
  3. 3.
    Tamir, D.E., Shaked, N.T., Wilson, P.J., Dolev, S.: High-speed and low-power electro-optical DSP coprocessor. J. Opt. Soc. Am. A 26, A11–A20 (2009)CrossRefGoogle Scholar
  4. 4.
    Kotb, A.: Ultrafast all-optical logic OR gate based on two-photon absorption with a semiconductor optical amplifier-assisted delayed interferometer. J Korean Phys Soc 68, 201–205 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, J., Luo, M., Qiu, Y., Li, X., Gong, J., Xu, J., et al.: Dual-channel AND logic gate based on four-wave mixing in a multimode silicon waveguide. IEEE Photonics J. 9, 1–6 (2017)Google Scholar
  6. 6.
    Tian, Y., Zhang, L., Xu, Q., Yang, L.: XOR/XNOR directed logic circuit based on coupled-resonator-induced transparency. Laser Photon Rev 7, 109–113 (2013)CrossRefGoogle Scholar
  7. 7.
    Yang, L., Guo, C., Zhu, W., Zhang, L., Sun, C.: Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photonics Technol. Lett. 27, 809–812 (2015)CrossRefGoogle Scholar
  8. 8.
    Hardy, J., Shamir, J.: Optics inspired logic architecture. Opt. Express 15, 150–165 (2007)CrossRefGoogle Scholar
  9. 9.
    Yang, L., Zhang, L., Guo, C., Ding, J.: XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators. Opt. Express 22, 2996–3012 (2014)CrossRefGoogle Scholar
  10. 10.
    Tian, Y., Zhang, L., Ding, J., Yang, L.: Demonstration of electro-optic half-adder using silicon photonic integrated circuits. Opt. Express 22, 6958–6965 (2014)CrossRefGoogle Scholar
  11. 11.
    Tian, Y., Zhao, Y., Chen, W., Guo, A., Li, D., Zhao, G., et al.: Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt. Express 23, 26342–26355 (2015)CrossRefGoogle Scholar
  12. 12.
    Tian, Y., Zhao, G., Liu, Z., Guo, A., Xiao, H., Wu, X., et al.: Reconfigurable electro-optic logic circuits using microring resonator-based optical switch array. IEEE Photonics J. 8, 1–8 (2016)Google Scholar
  13. 13.
    Kumar, S., Singh, G., Bisht, A., Amphawan, A.: Design of D flip-flop and T flip-flop using Mach–Zehnder interferometers for high-speed communication. Appl. Opt. 54, 6397–6405 (2015)CrossRefGoogle Scholar
  14. 14.
    Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., et al.: A graphene-based broadband optical modulator. Nature 474, 64–67 (2011)CrossRefGoogle Scholar
  15. 15.
    Hao, R., Du, W., Chen, H., Jin, X., Yang, L., Li, E.: Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 103, 061116 (2013)CrossRefGoogle Scholar
  16. 16.
    Du, W., Hao, R., Li, E.-P.: The study of few-layer graphene based Mach − Zehnder modulator. Opt. Commun. 323, 49–53 (2014)CrossRefGoogle Scholar
  17. 17.
    Phatak, A., Cheng, Z., Qin, C., Goda, K.: Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt. Lett. 41, 2501–2504 (2016)CrossRefGoogle Scholar
  18. 18.
    Yang, L., Hu, T., Shen, A., Pei, C., Li, Y., Dai, T., et al.: Proposal for a 2*2 optical switch based on graphene–silicon-waveguide microring. IEEE Photonics Technol. Lett. 26, 235–238 (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Cheng, Z., Xu, K., Tsang, H.K., Xu, J.-B.: High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013)CrossRefGoogle Scholar
  20. 20.
    Farmani, A., Zarifkar, A., Sheikhi, M.H., Miri, M.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017)CrossRefGoogle Scholar
  21. 21.
    Janjan, B., Fathi, D., Miri, M., Ghaffari-Miab, M.: Ultra-wideband high-speed Mach–Zehnder switch based on hybrid plasmonic waveguides. Appl. Opt. 56, 1717–1723 (2017)CrossRefGoogle Scholar
  22. 22.
    Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T.F., Shepard, K., et al.: Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013)CrossRefGoogle Scholar
  23. 23.
    Pospischil, A., Humer, M., Furchi, M.M., Bachmann, D., Guider, R., Fromherz, T., et al.: CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892–896 (2013)CrossRefGoogle Scholar
  24. 24.
    Chen, W., Yang, L., Wang, P., Zhang, Y., Zhou, L., Yang, T., et al.: Electro-optical logic gates based on graphene–silicon waveguides. Opt. Commun. 372, 85–90 (2016)CrossRefGoogle Scholar
  25. 25.
    Zivarian, H., Zarifkar, A., Miri, M.: Electro-optical full-adder/full-subtractor based on graphene–silicon switches. J. Nanophotonics 12, 1–12 (2018)CrossRefGoogle Scholar
  26. 26.
    Guo, Z., Lu, L., Zhou, L., Shen, L., Chen, J.: 16 × 16 silicon optical switch based on dual-ring-assisted Mach–Zehnder interferometers. J. Lightwave Technol. 36, 225–232 (2018)CrossRefGoogle Scholar
  27. 27.
    Qiao, L., Tang, W., Chu, T.: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci Rep 7, 42306 (2017)CrossRefGoogle Scholar
  28. 28.
    Suzuki, K., Tanizawa, K., Suda, S., Matsuura, H., Inoue, T., Ikeda, K., et al.: Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches. Opt. Express 25, 7538–7546 (2017)CrossRefGoogle Scholar
  29. 29.
    Caulfield, H.J., Soref, R.A., Qian, L., Zavalin, A., Hardy, J.: Generalized optical logic elements—GOLEs. Opt. Commun. 271, 365–376 (2007)CrossRefGoogle Scholar
  30. 30.
    Chattopadhyay, T., Roy, J.N.: Design of SOA-MZI based all-optical programmable logic device (PLD). Opt. Commun. 283, 2506–2517 (2010)CrossRefGoogle Scholar
  31. 31.
    Lei, L., Dong, J., Zou, B., Wu, Z., Dong, W., Zhang, X.: Expanded all-optical programmable logic array based on multi-input/output canonical logic units. Opt. Express 22, 9959–9970 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Communications and Electronics, School of Electrical and Computer EngineeringShiraz UniversityShirazIran

Personalised recommendations