Advertisement

Improving the transmission efficiency in eight-channel all optical demultiplexers

  • Bahareh Mohammadi
  • Mohammad SorooshEmail author
  • Abdulnabi Kovsarian
  • Yousef Seifi Kavian
Original Paper
  • 8 Downloads

Abstract

In order to improve the transmission efficiency in eight-channel optical demultiplexers, we are going to use novel resonant cavities for performing the wavelength selecting function in photonic crystal demultiplexers. These resonant cavities will be created by removing one rod and reducing the radius of four rods. By incorporating eight cavities with different sizes for the reduced rods, we proposed a structure which is capable of separating eight optical channels with transmission efficiencies very close to 100%. The average channel spacing is about 3 nm. Crosstalk values vary between − 40 and − 16 dB.

Keywords

Photonic crystal Demultiplexer Cavity Crosstalk 

Notes

References

  1. 1.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRefGoogle Scholar
  2. 2.
    Ying, C., Jing, D., Jia, S., Qiguang, Z., Weihong, B.: Study on tunable filtering performance of compound defect photonic crystal with magnetic control. Int. J. Light Electron Opt. 126, 5353–5356 (2015)CrossRefGoogle Scholar
  3. 3.
    Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62, 866–872 (2016)CrossRefGoogle Scholar
  4. 4.
    Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)CrossRefGoogle Scholar
  5. 5.
    Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008)CrossRefGoogle Scholar
  6. 6.
    Lee, K.Y., Lin, J.M., Yang, Y.C., Yang, Y.B., Wu, J.S., Lin, Y.J., Lee, W.Y.: The designs of XOR logic gates based on photonic crystals (2008). http://dx.doi.org/10.1117/12.803465
  7. 7.
    Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photon. Nanostruct. Fundam. Appl. 19, 1–11 (2016)CrossRefGoogle Scholar
  8. 8.
    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016)Google Scholar
  10. 10.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)CrossRefGoogle Scholar
  11. 11.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photon. J. 9, 1–11 (2017)CrossRefGoogle Scholar
  12. 12.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)CrossRefGoogle Scholar
  13. 13.
    Mehdizadeh, F., Alipour-banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233–1239 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photon. Nanostruct. Fundam. Appl. 5, 164–170 (2007)CrossRefGoogle Scholar
  15. 15.
    Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)CrossRefGoogle Scholar
  16. 16.
    Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97–101 (2013)CrossRefGoogle Scholar
  17. 17.
    Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photon. Nanostruct. Fundam. Appl. 8, 14–22 (2010)CrossRefGoogle Scholar
  18. 18.
    Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Int. J. Light Electron Opt. 122, 1481–1485 (2011)CrossRefGoogle Scholar
  19. 19.
    Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quantum Electron. 45, 1063–1075 (2013)CrossRefGoogle Scholar
  20. 20.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5964–5967 (2013)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016)CrossRefGoogle Scholar
  22. 22.
    Marziye Mousavizadeh, S., Soroosh, M., Mehdizadeh, F.: Photonic crystal-based demultiplexers using defective resonant cavity. Optoelectron. Adv. Mater. Rapid Commun. 9, 28–31 (2015)Google Scholar
  23. 23.
    Kim, S., Park, I., Lim, H.: Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback. Opt. Exp. 12, 5145 (2004)Google Scholar
  24. 24.
    Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)CrossRefGoogle Scholar
  25. 25.
    Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Int. J. Light Electron Opt. 125, 5348–5351 (2014)CrossRefGoogle Scholar
  26. 26.
    Taflove, A.: Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, Norwood (1995)zbMATHGoogle Scholar
  27. 27.
    Qiu, M.: Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)CrossRefGoogle Scholar
  28. 28.
    Cheng, S.C., Wang, J.Z., Chen, L.W., Wang, C.C.: Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Int. J. Light Electron Opt. 123, 1928–1933 (2012)CrossRefGoogle Scholar
  29. 29.
    Naoum, R., Bouamami, S.: Temperature effect on the tenability of an eight-channel demultiplexer. Int. J. Light Electron Opt. 125, 5164–5166 (2014)CrossRefGoogle Scholar
  30. 30.
    Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016, 1–10 (2016)CrossRefGoogle Scholar
  31. 31.
    Wang, P., Ren, C., Han, P., Feng, S.: Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt. Mater. 46, 195–202 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations