Optimal control scheme for pneumatic soft actuator under comparison of proportional and PWM-solenoid valves

  • Haiming HuangEmail author
  • Junhao Lin
  • Linyuan Wu
  • Bin Fang
  • Fuchun SunEmail author
Original Paper


Pneumatic soft actuator is a crucial component of soft robot. This paper proposes several pneumatic control schemes implemented with proportional and PWM-solenoid valves to achieve optimal control for pneumatic soft actuators adapted to different soft robots, such as soft gripper and soft humanoid hand. The schemes include: proportional valve; 3/2-way PWM-solenoid valve; 2/2-way PWM-solenoid valve. The control framework of these schemes contains human–machine interface in upper computer and control algorithm in lower computer. Sinusoidal and multi-step signals are served as reference input to draw a comparison of pressure tracking precision, steady-state accuracy and responsibility of these proposed schemes. The experimental results show that the scheme of proportional valve is more excellent than those of the PWM-solenoid valves, and the scheme of 3/2-way is superior to that of 2/2-way with regard to PWM-solenoid valve. Considering the cost, the scheme of 3/2-way PWM-solenoid valve is the most suitable choice for the system with multi-channel soft actuators. Therefore, the research achievement of this paper is providing a valuable suggestion on balancing the performance and cost for different soft robotic system applications.


Soft actuator Pneumatic control Proportional valve PWM-solenoid valve 



The authors are grateful for the supports provided by the National Science Foundation of China under Grant No. 61803267, China Postdoctoral Science Foundation funded project under Grant No. 2017M622757, the Beijing Science and Technology Program under Grant No. Z171100000817007, the National Science Foundation of China under Grant Nos. 61503212 and 61572328. Moreover, the authors are grateful for the support of Science and Technology Commissioned Project of Shenzhen University (the research of pneumatic network type tactile perception soft bionic hand).


  1. 1.
    Hao, Y., Gong, Z., Xie, Z., Guan, S., Yang, X., Ren, Z., Wang, T., Wen, L.: Universal soft pneumatic robotic gripper with variable effective length. In: 35th Chinese Control Conference (CCC), TCCT, Chengdu, People’s Republic of China, pp. 6109–6114 (2016)Google Scholar
  2. 2.
    Tian, M., Xiao, Y., Wang, X., Chen, J., Zhao, W.: Design and experimental research of pneumatic soft humanoid robot hand. In: Kim, J.H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing, vol. 447, pp. 469–478. Springer, Cham (2017)Google Scholar
  3. 3.
    Deimel, R., Brock, O.: A novel type of compliant and under actuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35, 161–185 (2016)CrossRefGoogle Scholar
  4. 4.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)CrossRefGoogle Scholar
  5. 5.
    Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016)CrossRefGoogle Scholar
  6. 6.
    Payne, C.J., Wamala, I., Abah, C., Thalhofer, T., Saeed, M., Bautista-Salinas, D., Horvath, M.A., Vasilyev, N.V., Roche, E.T., Pigula, F.A., Walsh, C.J.: An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 4, 241–250 (2017)CrossRefGoogle Scholar
  7. 7.
    Gul, J.Z., Yang, Y.J., Young Su, K., Choi, K.H.: Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Robot. 4, 224–240 (2017)CrossRefGoogle Scholar
  8. 8.
    Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robot. Auton. Syst. 99, 63–74 (2018)CrossRefGoogle Scholar
  9. 9.
    Dinh, B.K., Xiloyannis, M., Cappello, L., Antuvan, C.W., Yen, S., Masia, L.: Adaptive backlash compensation in upper limb soft wearable exoskeletons. Robot. Auton. Syst. 92, 173 (2017)CrossRefGoogle Scholar
  10. 10.
    Hao, Y., Gong, Z., Xie, Z., Guan, S., Yang, X., Ren, Z., Wang, T., Wen, L.: Universal soft pneumatic robotic gripper with variable effective length. In: Control Conference, TCCT, pp. 6109–6114 (2016)Google Scholar
  11. 11.
    Bishop-Moser, J., Krishnan, G., Kota, S.: Force and moment generation of fiber-reinforced pneumatic soft actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4460–4465 (2013)Google Scholar
  12. 12.
    Gerboni, G., Diodato, A., Ciuti, G., Cianchetti, M., Menciassi, A.: Feedback control of soft robot actuators via commercial flex bend sensors. IEEE/ASME Trans. Mechatron. 22, 1881–1888 (2017)CrossRefGoogle Scholar
  13. 13.
    Wang, W., Ahn, S.H.: Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 4, 379–389 (2017)CrossRefGoogle Scholar
  14. 14.
    Rodrigue, H., Wang, W., Han, M.W., Kim, T., Ahn, S.H.: An overview of shape memory alloy-coupled actuators and robots. Soft Robot. 4, 3 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., Shepherd, R.: A helping hand: soft orthosis with integrated optical strain sensors and EMG control. IEEE Robot. Autom. Mag. 23, 55–64 (2016)CrossRefGoogle Scholar
  16. 16.
    Jiang, H., Liu, X., Chen, X., Wang, Z., Jin, Y., Chen, X.: Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks. In: IEEE International Conference on Robotics and Biomimetics, pp. 350–356. IEEE (2016)Google Scholar
  17. 17.
    Bishop-Moser, J., Kota, S.: Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot. 31, 536–545 (2015)CrossRefGoogle Scholar
  18. 18.
    Skorina, E.H., Luo, M., Ozel, S., Chen, F., Tao, W., Onal, C.D.: Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators. In: IEEE International Conference on Robotics and Automation, pp. 2544–2549. IEEE (2015)Google Scholar
  19. 19.
    Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014)CrossRefGoogle Scholar
  20. 20.
    Tavakoli, M., Lopes, P., Lourenco, J., Rocha, R.P., Giliberto, L., de Almeida, A.T., Majidi, C.: Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sens. J. 17, 5669–5677 (2017)CrossRefGoogle Scholar
  21. 21.
    Hao, Y., Wang, T., Ren, Z., Gong, Z., Wang, H., Yang, X., Guan, S., Wen, L.: Modeling and experiments of a soft robotic gripper in amphibious environments. Int. J. Adv. Robot. Syst. 14, 1729881417707148 (2017)CrossRefGoogle Scholar
  22. 22.
    Laski, P.A.: Proportional valve with a piezoelectric actuator. Eur. Phys. J. Web Conf. 143, 02064 (2017)CrossRefGoogle Scholar
  23. 23.
    Avram, M., Bucsan, C., Duminica, D., Bogatu, L., Spanu, A.R.: Pneumatic proportional valve with piezoelectric actuator, chap. 27. In: DAAAM international Scientific Book, pp. 331-346 (2011)Google Scholar
  24. 24.
    Gastaldi, L., Pastorelli, S., Sorli, M.: Static and dynamic experimental investigation of a pneumatic open loop proportional valve. Exp. Tech. 40, 1–9 (2016)CrossRefGoogle Scholar
  25. 25.
    Badr, M.F., Abdullah, Y., Jaliel, A.K.: Position control of the pneumatic actuator employing ON/OFF solenoids valve. Int. J. Mech. Mechatron. Eng. 17, 29–37 (2017)Google Scholar
  26. 26.
    Laib, K., Megnous, A., Pham, M., Linshi, X.: State averaged model based design of nonlinear observer for the on/off solenoid valve pneumatic actuators. Research Report: Ecole Centrale De Lyon (2016)Google Scholar
  27. 27.
    Rahman, R.A., Sepehri, N.: Experimental comparison between proportional and PWM-solenoid valves controlled servopneumatic positioning systems. Trans. Can. Soc. Mech. Eng. 41, 65–83 (2017)CrossRefGoogle Scholar
  28. 28.
    Mohan, B., Saravanakumar, D.: Comparison of servo positioning performance of pneumatic cylinders using proportional valve method and PWM control method. Appl. Mech. Mater. 541–542, 1233–1237 (2014)CrossRefGoogle Scholar
  29. 29.
    Meng, F., Zhang, H., Cao, D., Chen, H.: System modeling, coupling analysis, and experimental validation of a proportional pressure valve with pulsewidth modulation control. IEEE/ASME Trans. Mechatron. 21, 1742–1753 (2016)CrossRefGoogle Scholar
  30. 30.
    Shiee, M., Sharifi, A., Fathi, M., Najafi, F.: An experimental comparison of PWM schemes to improve positioning of servo pneumatic systems. Int. J. Adv. Manuf. Technol. 82, 1765–1779 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information EngineeringShenzhen UniversityShenzhenChina
  2. 2.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations