Photonic Network Communications

, Volume 37, Issue 1, pp 131–138 | Cite as

Few-mode ring core fiber characteristics: temperature impact

  • D. Vigneswaran
  • M. S. Mani RajanEmail author
  • Moustafa H. Aly
  • Ahmed Nabih Zaki Rashed
Original Paper


In this paper, a novel fiber is proposed to support few linearly polarized (LP) modes, with the feature of a circular ring-shaped core filled by liquid. This fiber supports four LP modes: LP01, LP02, LP31 and LP11. The properties of all spatial modes are numerically analyzed by considering the different optical parameters such as confinement loss, dispersion and differential modal delay (DMD) at different temperatures. The obtained results show that the proposed fiber reduces the confinement loss as well as DMD over the entire range of the C-band. The same characteristics are also investigated and optimized at 1.55 μm in the temperature range 20–80 °C. Both confinement loss and DMD evidently decrease with temperature leading to the possibility of using this type of fibers as temperature sensors.


Few-mode fiber Linearly polarized fiber Group velocity dispersion Differential modal delay Temperature sensor 


  1. 1.
    Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tomita, S., Koshiba, M.: Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2011), INSPEC Accession Number: 12061432, Los Angeles, CA, USA, 6–10 March 2011Google Scholar
  2. 2.
    Ip, E., Li, M.J., Bennett, K. , Huang, Y.K., Tanaka, A., Korolev, A., Koreshkov, K., Wood, W., Mateo, E., Hu, J., Yano, Y.: 146λ × 6×19-Gbaud wavelength-and-mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2013), INSPEC Accession Number: 13582502, Anaheim, CA, USA, 17–21 March 2013Google Scholar
  3. 3.
    Salsi, M., Koebele, C., Charlet, G., Bigo, S.: Mode division multiplexed transmission with a weakly-coupled few-mode fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2012), Los Angeles, CA, USA, pp. 4–8, 1–3 March 2012Google Scholar
  4. 4.
    Sakamoto, T., Mori, T., Yamamoto, T., Hanzawa, N., Tomita, S., Yamamoto, F., Saitoh, K., Koshiba, M.: Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. J. Lightwave Technol. 31(13), 2192–2199 (2013)CrossRefGoogle Scholar
  5. 5.
    Alavi, S.E., Amiri, I.S., Ahmad, H., Supaat, A.S.M., Fisal, N.: Generation and transmission of 3 × 3 w-band multi-input multi-output orthogonal frequency division multiplexing-radio-over-fiber signals using micro-ring resonators. Appl. Opt. 53, 8049–8054 (2014)CrossRefGoogle Scholar
  6. 6.
    Amiri, I.S., Alavi, S.E., Fisal, N., Supaat, A.S.M., Ahmad, H.: All-optical generation of Two IEEE802.11n signals for 2 × 2 MIMO-RoF via MRR system. IEEE Photonics J. 6, 1–12 (2014)CrossRefGoogle Scholar
  7. 7.
    Hindia, M.N., Qamar, F., Rahman, T.A., Amiri, I.S.: A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Netw. 74, 34–46 (2018)CrossRefGoogle Scholar
  8. 8.
    Hindia, M.N., Fadoul, M.M., Rahman, T.A., Amiri, I.S.: A stochastic geometry approach to full-duplex MIMO relay network. Wirel. Commun. Mob. Comput. 2018, 1–11 (2018)CrossRefGoogle Scholar
  9. 9.
    Ryf, R., Randel, S., Fontaine, N.K., Montoliu, M., Burrows, E., Corteslli, S., Chandrasekhar, S., Gnauck, A.H., Xie, C., Essiambre, R.-J., Winzer, P.J., Delbue, R., Pupalaikis, P., Sureka, A., Sun, Y., Gruner-Nielsen, L., Jensen, R.V., Lingle, R.: 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode-fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference (OFC/NFOE 2013), INSPEC Accession Number: 13582501, Anaheim, CA, USA, 17–21 March 2013Google Scholar
  10. 10.
    Vigneswaran, D., Ayyanar, N., Sumathi, M., Mani Rajan, M.S.: Tunable differential modal gain in FM-EDFA system using dual pumping scheme at 100 Gbps system capacity. Photon Netw. Commun. 34(3), 451–460 (2017)CrossRefGoogle Scholar
  11. 11.
    Ferreira, F., Fonseca, D., Silva, H.: Design of few-mode fibers with arbitrary and flattened differential mode delay. IEEE Photonics Technol. Lett. 25(5), 438–441 (2013)CrossRefGoogle Scholar
  12. 12.
    Gruner-Nielsen, L., Sun, Y., Nicholson, J., Jakobsen, D., Jespersen, K., Lingle, R., Palsdottir, B.: Few mode transmission fiber with low DGD low mode coupling, and low loss. J. Lightwave Technol. 30(23), 3693–3698 (2012)CrossRefGoogle Scholar
  13. 13.
    Chebaane, S., Fathallah, H., Seleem, H., Machhout, M.: Proposed raised cosine FMF for dispersion management in next-generation optical networks. IEEE Photonics J. 8(1), 1–12 (2016)CrossRefGoogle Scholar
  14. 14.
    Fontaine, N.K., Ryf, R., Hirano, M., Sasaki, T.: Experimental investigation of crosstalk accumulation in a ring-core fiber. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827287, Waikoloa, HI, USA, 8–10 July 2013Google Scholar
  15. 15.
    Kasahara, M., Saitoh, K., Sakamoto, T., Hanzawa, N., Matsui, T., Tsujikawa, K., Yamamoto, F.: Design of three-spatial-mode ring-core fiber. J. Lightwave Technol. 32(7), 1337–1343 (2014)CrossRefGoogle Scholar
  16. 16.
    Jin, X.Q., Li, R., O’Brien, D.C., Payne, F.P.: Linearly polarized mode division multiplexed transmission over ring-index multimode fibres. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827306, Waikoloa, HI, USA, 8–10 July 2013Google Scholar
  17. 17.
    Hecht, J.: City of Light: The Story of Fiber Optics. Oxford University Press, Cary 2004.
  18. 18.
    Altkorn, R., Koev, I., Van Duyne, R.P., Litorja, M.: Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. 36(34), 8992–8999 (1997)CrossRefGoogle Scholar
  19. 19.
    Petrini, P.A., PizolatoJr, J.C., De Francisco, C.A., Alcantara, L.D.S., Salgado, F.C., Spadoti, D.H.: A liquid-filled W-type optical fiber temperature sensor. In: Proceedings of the International Conference on Microwave and Optoelectronics (IMOC), INSPEC Accession Number: 15695477, Porto de Galinhas, Brazil, 3–6 Nov. 2015Google Scholar
  20. 20.
    Ghosh, G., Endo, M., Endo, M., Lwasaki, T.: Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glass. J. Lightwave Technol. 12(8), 1338–1342 (1994)CrossRefGoogle Scholar
  21. 21.
    Du, J., Liu, Y., Wang, Z., Liu, Z., Zou, B., Jin, L., Liu, B., Kai, G., Dong, X.: Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt. Express 16(6), 4263–4269 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhao, Y., Xia, F., Hai-Feng, H., Chao, D.: A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement. IEEE Trans. Instrum. Meas. 66, 3378–3386 (2017)CrossRefGoogle Scholar
  23. 23.
    Dai, B., Shen, X., Li, J., Dai, N., Yang, L., Xiongwei, H., Wang, Y., Liu, Y., Peng, J., Li, H.: Core regulation of long period grating based on ring-core hollow fiber and the application of temperature sensing. IEEE Photonics 09, 1–7 (2017)CrossRefGoogle Scholar
  24. 24.
    Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design of a family of ring-core fibers for OAM transmission studies. Opt. Express 23(8), 10553–10563 (2015)CrossRefGoogle Scholar
  25. 25.
    Gregg, P., et al.: Stable transmission of 12 OAM states in air-core fiber. In: Proceedings of IEEE CLEO, June 2013, pp. 1–2Google Scholar
  26. 26.
    Vigneswaran, D., Ayyanar, N., Sharmac, M., Sumathi, M., Mani Rajan, M.S., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A 269, 22–28 (2018)CrossRefGoogle Scholar
  27. 27.
    Yu, C., Liou, J., Huang, S., Chang, H.: Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Opt. Express 16(7), 4443–4451 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Vigneswaran
    • 1
  • M. S. Mani Rajan
    • 2
    Email author
  • Moustafa H. Aly
    • 3
  • Ahmed Nabih Zaki Rashed
    • 4
  1. 1.Department of Electronics and Communication EngineeringSri Krishna College of TechnologyCoimbatoreIndia
  2. 2.Department of Physics, University College of EngineeringAnna UniversityRamanathapuramIndia
  3. 3.Department of Electronics and Communication Engineering, College of Engineering and TechnologyArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
  4. 4.Electronics and Electrical Communications Engineering Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations