Photonic Network Communications

, Volume 37, Issue 1, pp 38–52 | Cite as

Performance analysis and comparison of optical signal processing beamforming networks: a survey

  • B. Elizabeth CarolineEmail author
  • Susan Christina Xavier
  • Arunachalam P. Kabilan
  • Johnson William
Original Paper


Forthcoming wireless systems are developed to support greater data rate and extra coverage area. This can be achieved with the help of multiple input multiple output and smart antenna techniques. One of the major rapidly emerging areas of communication is the smart antenna system which aids in attaining better coverage by increasing the signal strength only in the chosen direction. With effective optical beamforming techniques, the smart antenna systems demonstrate to be more competent in terms of excellence of signals in wireless communication. In this paper, a succinct outline of the smart antenna, an analysis and the comparison of different architectures of optical signal processing beamforming network (OSPBFN) is presented. The performance of OSPBFN is analyzed and the comparison is done for different architectures with the antenna radiation parameters. This paper can enhance the understanding of the ongoing research work in the area of OSPBFN.


Optical signal processing Beamforming network Smart antenna True time delay Optical ring resonator Fiber Bragg grating 


  1. 1.
    Alexiou, A., Haardt, M.: Smart antenna technologies for future wireless systems: trends and challenges. IEEE Commun. Mag. 42, 90–97 (2004)Google Scholar
  2. 2.
    Azad, M.M., Ahmed, A.H.: Development of smart antenna for future generation wireless internet connection. IJCSNS Int. J. Comput. Sci. Netw. Secur. 10, 212–222 (2010)Google Scholar
  3. 3.
    Lehne, P.H., Petersen, M.: An overview of smart antenna technology for mobile communications systems. IEEE Commun. Surv. Fourth Quart. 2, 2–13 (1999)Google Scholar
  4. 4.
    Winters, J.: Smart antennas for wireless systems. IEEE Pers. Commun. 1, 23–27 (1998)Google Scholar
  5. 5.
    Roy, R.H.: Application of Smart Antenna Technology in Wireless communication Systems, chapter 10, pp. 125–135. Springer, Berlin (2000)Google Scholar
  6. 6.
    Liberti, C., Rappaport, T.S.: Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  7. 7.
    Haupt, R.L.: The development of smart antennas. IEEE AP-S Int. Symp. Dig. 4, 48–51 (2001)Google Scholar
  8. 8.
    Passiopoulos, G., Robertson, I.D.: Smart antenna techniques for wireless mobile multimedia services. IEEE Mob. Multimed. Commun. Colloq. Dig. 248, 12/1–12/5 (1996)Google Scholar
  9. 9.
    Ahmadi, S.: An overview of next-generation mobile WiMAX technology. IEEE Commun. Mag. 27(9), 84–98 (2009)Google Scholar
  10. 10.
    Etemad, K.: Overview of mobile WiMAX technology and evolution. IEEE Commun. Mag. 46(10), 31–40 (2008)Google Scholar
  11. 11.
    Chryssomallis, M.: Smart antennas. IEEE Antennas Propag. Mag. 42, 129–136 (2000)Google Scholar
  12. 12.
    Liu, H.T., Gao, S., Loh, T.-H.: Electrically small and low cost smart antenna for wireless communication. IEEE Trans. Antennas Propag. 60, 1540–1549 (2012)Google Scholar
  13. 13.
    Kawitkar, R., Wakde, D.G.: Advances in smart antenna system. J. Sci. Ind. Res. 64, 660–665 (2005)Google Scholar
  14. 14.
    Agius, A., Leach, S.M., Suvannapattana, P., Lund, T., Saunders, S.R.: Intelligent Handheld Antennas for Mobile Communications Beyond the 2nd Generation,version 2.0.2 (2012)Google Scholar
  15. 15.
    Bellofiore, S., Balanis, C.A., Foutz, J., Spanias, A.S.: Smart-antenna systems for mobile communication networks. Part 1. Overview and antenna design. IEEE Antennas Propag. Mag. 44, 145–154 (2002)Google Scholar
  16. 16.
    Jeon, S., Wang, Y., Qian, Y., Itoh, T.: A novel smart antenna system implementation for broad-band wireless communications. IEEE Trans. Antennas Propag. 50, 600–606 (2002)Google Scholar
  17. 17.
    Jiang, Y., Bhargava, V.K.: Application of smart antenna techniques in cellular mobile systems. IEEE Pac. Rim Commun. Comput. Signal Process. Conf. 1, 362–365 (1997)Google Scholar
  18. 18.
    Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., Parkvall, S.: LTE: the evolution of mobile broadband. IEEE Commun. Mag. 47(4), 44–51 (2009)Google Scholar
  19. 19.
    Douglas, O.R., Rendink, M., Kavanagh, M.: Cellular system improvement through the use of switched multi-beam antenna systems. In: 3rd Workshop on Smart Antennas in Wireless Mobile Systems, Stanford University (1996)Google Scholar
  20. 20.
    Frerking, M., Austin, M.: Bell South/Cellwave Smart Antenna Field Trial and Analysis of a Switched Beam System, Second Workshop on Smart Antennas in Wireless Mobile Communications. Stanford University, Stanford (1995)Google Scholar
  21. 21.
    Godara, L.C.: Application of antenna array to mobile communications: part 1 & part II. Proc. IEEE 85(7), 1031–1055 (1997)Google Scholar
  22. 22.
    Godara, L.C.: Application of antenna arrays to mobile communications, Part II: beam-forming and direction of arrival considerations. Proc. IEEE 85, 1193–1245 (1997)Google Scholar
  23. 23.
    Mailloux, R.J.: Phased array theory and technology. Proc. IEEE 70, 246–291 (1982)Google Scholar
  24. 24.
    Tsoulos, G.V.: Smart antennas for mobile communication systems: benefits and challenges. J. Electron. Commun. Eng. 11, 84–94 (1999)Google Scholar
  25. 25.
    White, J.F.: Phased array technology workshop. J. Microw. 24, 16–28 (1981)Google Scholar
  26. 26.
    Denidni. T.A., Libar, T.E.: Wide band four-port butler matrix for switched multibeam antenna arrays. In: 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, pp. 2461–2464 (2003)Google Scholar
  27. 27.
    Siachalou, E., Vafiadis, E., Sotorios, S., Goudos, T., Samaras, C.S.Koukourlis, Panas, S.: On the design of switched-beam wideband BSs. IEEE Antennas Propag. Mag. 46, 158–167 (2004)Google Scholar
  28. 28.
    Papadopoulos, K., Papagianni, C., Foukarakis, I., Kaklamani, D., Venieris, I.: Optimal design of switched beam antenna arrays using Particle Swarm Optimization. In: IEEE 1st European Conference on Antennas and Propagation (EuCAP), pp. 1–6 (2006)Google Scholar
  29. 29.
    Bobor-Oyibo, F., Foti, S., Smith, D.: A multiple switched beam Smart antenna with beam shaping for dynamic optimisation of capacity & coverage in mobile telecommunication networks. in: IEEE 8th International Symposium on Propagation and EM Theory (ISAPE) (2008)Google Scholar
  30. 30.
    Kaminski, P., Wincza, K., Gruszczynski, S.: Switched-beam antenna array with broadside beam fed by modified butler matrix for radar receiver application. Microw. Opt. Technol. Lett. 56, 732–735 (2014)Google Scholar
  31. 31.
    Ibrahim, S.Z., Rahim, M.: Switched beam antenna using omnidirectional antenna array. In: IEEE Asia-Pacific Conference on in Applied Electromagnetic (APACE), pp. 1–4 (2007)Google Scholar
  32. 32.
    Koubeissi, M., Decroze, C., Monediere, T., Jecko, B.: Switched-beam antenna based on novel design of Butler Matrices with broadside beam. Electron. Lett. 41, 1097–1098 (2005)Google Scholar
  33. 33.
    Tseng, C.H., Chen, C.J., Chu, T.H.: A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network. IEEE Antennas Wirel. Propag. Lett. 7, 432–435 (2008)Google Scholar
  34. 34.
    Swales, S.C., Beach, M.A., Edwards, D.J.: Multi-beam adaptive base-station antennas for cellular land mobile radio systems. Proc. IEEE Vehic. Technol. Conf. 1, 341–348 (1989)Google Scholar
  35. 35.
    Swales, S.C., Beach, M.A., Edwards, D.J., McGeehan, J.P.: The performance enhancement of multibeam adaptive base-station antennas for cellular land mobile radio systems. IEEE Trans. Vehic. Technol. 29, 56–67 (1990)Google Scholar
  36. 36.
    Kim, M., Ahn, S., Choi, S., Sarkar, T.K.: An adaptive beam-forming algorithm for smart antenna system in practical CDMA environments. IEICE Trans. Commun. 86(3), 1163–1169 (2003)Google Scholar
  37. 37.
    Monzingo, R.A., Miller, T.W.: Introduction to adaptive arrays, pp. 77–79. Wiley, New York (1980)Google Scholar
  38. 38.
    Gerlach, D., Paul Raj, A.: Adaptive transmitting antenna arrays with feedback. IEEE Signal Process. Lett. 1, 150–152 (1994)Google Scholar
  39. 39.
    Anderson, S., Millnert, M., Viberg, M., Wahlberg, B.: An adaptive array for mobile communications systems. IEEE Trans. Veh. Technol. 40, 230–236 (1991)Google Scholar
  40. 40.
    Wang, Y., Cruz, J.R.: Adaptive antenna arrays for cellular CDMA communication systems. In: Proceedings IEEE International Conference Acoustics, Speech and Signal Processing, Detroit, pp. 1725–1728 (1995)Google Scholar
  41. 41.
    Barett, M., Coromina, F.: Development and implementation of an adaptive digital beamforming network for satellite communication systems. In: 6th International Digital Processing of Signals in Communications Conference, pp. 10–15 (1991)Google Scholar
  42. 42.
    Mousavi, P., Fakharzadeh, M., Safavi-Naeini, S.: Design and implementation of a low cost adaptive antenna system for mobile satellite communication. In: IEEE International Symposium on Phased Array Systems and Technology (ARRAY), pp. 512–517 (2010)Google Scholar
  43. 43.
    Ajikota, J.S., Mcfarland, J.L.: Beam-forming feeds. In: Antenna Handbook, 19-1–19-122 (1988)Google Scholar
  44. 44.
    John Litva and Titus Kwok-Yeung Lo: Digital Beam forming in Wireless Communications, pp. 100–120. Artech House, Boston (1996)Google Scholar
  45. 45.
    Telatar, E.: Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10, 585–595 (1999)MathSciNetGoogle Scholar
  46. 46.
    Shi, Q., Razaviyayn, M., Luo, Z.Q., He, C.: An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Trans. Signal Process. 59, 4331–4340 (2011)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Curtis, T.E.: Digital beam forming for sonar system. IEEE Proc. Pt. F 127, 257–265 (1980)Google Scholar
  48. 48.
    Winters, J.H.: Optimum combining in digital mobile radio with co-channel interference. IEEE Trans. Veh. Technol. 33, 144–155 (1984)Google Scholar
  49. 49.
    Goshi, D., Wang, Y., Itoh, T.: A single RF channel smart antenna receiver array with digital beamforming for WLAN application. IEEE Trans. Microw. Theory Tech. 12, 3052–3058 (2002)Google Scholar
  50. 50.
    Steyskal, H.: Digital beamforming antennas: an introduction. Microw. J. 30, 107–124 (1987)Google Scholar
  51. 51.
    Wiesel, Y., Eldar, C., Shamai, S.: Zero-forcing precoding and generalized inverses. IEEE Trans. Signal Process. 56, 4409–4418 (2008)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zhang, J., Wen, W., Fang, D.-G.: Comparison of correction techniques and analysis of errors for digital beamforming antenna array with single RF receiver. IEEE Trans. Antennas Propag. 60, 5157–5163 (2012)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Steyskal, H.: Digital beamforming antennas: an introduction. Microw. J. 30, 107–124 (1987)Google Scholar
  54. 54.
    Vu, T.B., Rathinam, M.: Direction finding with null steering at baseband using digital signal processors: a computer simulation. In: IEEE International AP-S Symposium Digest, pp. 254–257 (1988)Google Scholar
  55. 55.
    Roy, R., Paulraj, A., Kailath, T.: Direction-of-arrival estimation by subspace rotation methods—ESPRIT. IEEE Int. Acoust. Speech Signal Process. Conf. 11, 2495–2498 (1986)Google Scholar
  56. 56.
    Fredrick, J.D., Wang, Y., Itoh, T.: A smart antenna receiver array using a single RF channel and digital beamforming. IEEE Trans. Microw. Theory Tech. 50, 3052–3058 (2002)Google Scholar
  57. 57.
    Cheng, J., Kamiya, Y., Ohira, T.: Adaptive digital beamforming of ESPAR antenna using sequential perturbation. IEEE MTT-S Int. Microw. Sympos. Dig. 1, 133–136 (2001)Google Scholar
  58. 58.
    Miura, R., Tanaka, T., Chiba, I., Horie, A., Karasawa, Y.: Beamforming experiment with a DBF multibeam antenna in a mobile satellite environment. IEEE Trans. Microw. Theory Tech. 45, 707–714 (1997)Google Scholar
  59. 59.
    Hazard, C.R., Lockwood, G.R.: Developing a high-speed beamformer using the TMS320C6201 digital signal processor. In: IEEE Ultrasonic Symposium, pp. 1755–1758 (2000)Google Scholar
  60. 60.
    Tanaka, T., Miura, R., Chiba, I., Karasawa, Y.: An ASIC implementation scheme to realize a beam space CMA adaptive array antenna. IEICE Trans. Commun. E 78(11), 1467–1473 (1995)Google Scholar
  61. 61.
    Koepf, G.A.: Optical processor for phased array beam-forming. Proc. SPIE Conf. Opt. Technol. Microw. Appl. 477, 75–81 (1984)Google Scholar
  62. 62.
    Esman, R.D., Frankel, M.Y., Dexter, J.L., Goldberg, L.P., Mark, G., Stilwell, D., Cooper, D.G.: Fiber-optic prism true time-delay antenna feed. IEEE Photon. Technol. Lett. 5, 1347–1349 (1993)Google Scholar
  63. 63.
    Esman, R.D., Frankel, M.Y., Dexter, J.L., Goldberg, L.P., Mark, G., Stilwell, D.: Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay. Proc. SPIE 19, 133–143 (1993)Google Scholar
  64. 64.
    Ji, K., Inagaki, Y., Miura, R., Karasawa, Y.: Beam formation by using optical signal processing techniques. Antennas Propag. Soc. Int. Symp. 2, 739–742 (1997)Google Scholar
  65. 65.
    Ji, K., Inagaki, Y., Miura, R., Karasawa, Y.: Optical processor for multibeam microwave array antennas. Electron. Lett. 32, 822–824 (1996)Google Scholar
  66. 66.
    Akiyama, T., Inagaki, K., Mizuguchi, Y., Ohira, T.: Multibeam optical signal processing array antenna using optical waveguide arrays and lens. IEICE Trans. Commun. E 84(9), 2413–2420 (2001)Google Scholar
  67. 67.
    Akiyama, T., et al.: Fourier transform optical beamformer employing spatial light modulator IEICE. Trans. Electron. E 90(2), 465–473 (2007)Google Scholar
  68. 68.
    Akiyama, T., Ando, T., Hirano, Y.: Fourier transform optically controlled phased array antenna. In: International Conference on Photonics in Switching, Optical Society of America, WO4_4 (2013)Google Scholar
  69. 69.
    Zaglanikis, C.D., Benjamin, R., Seeds, A.J.: Optical beam-former for microwave phased array antennas, Microwave Optoelectronics. IEEE Colloq. 16/1–16/6 (1990)Google Scholar
  70. 70.
    Kuhlow, B., Przyrembel, G., Ehlers, H., Ziegler, R., Knuppel, J., Grosskopf, G., Eggemann, R., Rohde, D.: Silica based optical beamformer in a 60 GHz radio-over-fibre system for Broadband Communications. In: International Zurich Seminar on Access, Transmission, Networking, pp. 25-1–25-4 (2002)Google Scholar
  71. 71.
    Kuhwald, T., Boche, H.: A new optimum constrained beam forming Algorithm for Future mobile communication systems based on CDMA. In: Proceedings ACTS Mobile Communication Summit, pp. 963–968 (1999)Google Scholar
  72. 72.
    Caroline, P.E., Kabilan, A.P., Susan, X.: Christina, PVF2 coated single mode fiber based optical beamformer. Int. J. Microw. Opt. Technol. 5, 99–104 (2010)Google Scholar
  73. 73.
    Chen, M.Y., Subaraman, H., Chen, R.T.: Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmission. IEEE Photon. Technol. Lett. 2, 375–377 (2008)Google Scholar
  74. 74.
    Subaraman, H., Maggie, Y.C., Chen, R.T.: Photonic crystal fiber based true time delay beamformer for multiple RF beam transmission and reception of X-band phased –array antenna transmission. J. IEEE Light Wave Technol. 26, 2803–2808 (2008)Google Scholar
  75. 75.
    Jiang, Y., Shi, Z., Howley, B., Chen, X., Chen, M.Y., Chen, R.T.: Delay time enhanced photonic crystal fiber array for wireless communications using 2-D X-band phased-array antennas. Opt. Eng. 44, 125001 (2005)Google Scholar
  76. 76.
    Volkov, V.A., Gordeev, D.A., Ivanov, S.I., Lavrov, A.P., Saenko, I.I.: Photonic beamformer model based on analog fiber-optic links components. In: International Conference of Photonics and Information Optics, pp. 1–6 (2016)Google Scholar
  77. 77.
    Zainullin, A., Vidal, B., Macho, A., Llorente, R.: Multicore fiber beamforming network for broadband satellite communications. In: Proceedings of the SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications, pp. 10–16 (2017)Google Scholar
  78. 78.
    Gao, X., Huang, S., Wei, Y., Gao, C., Zhou, J.: A high-resolution compact optical true-time delay beamformer using fiber Bragg grating and highly dispersive fiber. J. Opt. Fib. Technol. 20, 478–482 (2014)Google Scholar
  79. 79.
    Huang, S., Li, J., Ye, Y., Shi, P., Zhou, J., Guo, B., Wanyi, G.: The further investigation of the true time delay unit based on discrete fiber Bragg gratings. Opt. Laser Technol. 44, 776–780 (2012)Google Scholar
  80. 80.
    Fan, C., Huang, S., Gao, X., Zhou, J., Wanyi, G., Zhang, H.: Compact high-frequency true-time-delay beamformer using bidirectional reflectance of the fiber gratings. J. Opt. Fiber Technol. 19, 60–65 (2013)Google Scholar
  81. 81.
    Jung, B.M., Yao, J.: A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines. IEEE Photon. Technol. Lett. 21(10), 627–629 (2009)Google Scholar
  82. 82.
    Liu, Y., Yao, J., Yang, J.: Wideband true-time-delay unit for phased array beamforming using discrete-chirped fiber grating prism. Opt. Commun. 207, 177–187 (2002)Google Scholar
  83. 83.
    Ng, W., Waiston, A.A., Tangonan, G.L., Lee, J.J., Newberg, I.L., Bernstein, N.: The first demonstration of an optically steered microwave PAA using true-time-delay. IEEE J Lightw. Technol. 9, 1124–1131 (1991)Google Scholar
  84. 84.
    Shibata, O., Inagaki, K., Karasawa, Y.: Beam-forming network characteristics of spatial optical signal processing array antenna for multibeam reception. IEEE Int. Microw. Symp. Dig. 3, 1371–1374 (1998)Google Scholar
  85. 85.
    Shibata, O., Inagaki, K., Ji, Y., Karasawa, Y.: A multibeam receiving array antenna by means of spatial optical signal processing. IEEE Antennas Propag. Soc. Int. Symp. 2, 743–746 (1997)Google Scholar
  86. 86.
    Shibata, O., Inagaki, K., Karasawa, Y., Mizuguchi, Y.: Spatial optical beam-forming network for receiving-mode multibeam array antenna-proposal and experiment. IEEE Trans. Microw. Theory Technol. 50, 1425–1430 (2002)Google Scholar
  87. 87.
    Inagaki, K., Karasawa, Y.: Spatial optical signal processing beam forming network for 2D Beam steering. IEICE Trans. Electron. E86-C, 1209–1216 (2003)Google Scholar
  88. 88.
    Tulchinsky, D.A., Mathews, P.J.: Ultrawide-Band fiber optic control of a millimeter wave transmit beamformer. IEEE Microw. Theory Tech. 49, 1248–1253 (2003)Google Scholar
  89. 89.
    Vidal, B., Corral, J.L., Piqueras, M.A., Marti, J.: Optical delay line based on arrayed waveguide gratings spectral periodicity and dispersive media for antenna beamforming applications. IEEE J. Sel. Top. Quantum Electron. 8, 1202–1210 (2002)Google Scholar
  90. 90.
    Vidal, B., Mengual, T., Ibanez-Lopez, C., Marti, J.: Optical beamforming network based on fiber optical delay lines and spatial light modulators for large antenna arrays. IEEE Photon. Technol. Lett. 18, 2590–2592 (2006)Google Scholar
  91. 91.
    Lavrov, A.P., Ivanov, S.I., Saenko, I.I.: Application of the fiber-optic communication system components for ultrawideband antenna array beamforming. In: International Conference on Antenna Theory and Techniques, Ukraine, pp. 1–4 (2015)Google Scholar
  92. 92.
    Zhang, J., Yao, J.: Photonic true-time delay beamforming using a switch-controlled wavelength-dependent. J. Light wave Technol. 34, 3923–3929 (2016)Google Scholar
  93. 93.
    Pasandi, M., Sisto, M.M., LaRochelle, S., Rusch, L.A.: Low distortion null-steering beamforming with a cascade of fiber Bragg grating. In: Gires-Tournois, M. E. (Ed.) Annual Meeting of the IEEE Lasers and Electro-Optics Society pp. 102–109 (2007)Google Scholar
  94. 94.
    Jung, B.M., Shin, J.D., Kim, B.G.: Optical true time-delay for two-dimensional X -band phased array antennas. IEEE Photon. Technol. Lett. 19, 877–879 (2007)Google Scholar
  95. 95.
    Jung, B.M., Yao, J.P.: A two-dimensional optical true time-delay beamformer based on prism and switch-based fiber-optic delay lines. IEEE Photon. Technol. Lett. 23, 627–629 (2009)Google Scholar
  96. 96.
    Howard, R., Joe, S., Yao, J.: A true time delay beamforming system incorporating a wavelength tunable optical phase-lock loop. J. Lightw. Technol. 25, 1761–1770 (2007)Google Scholar
  97. 97.
    Wei, Y., Yuan, C., Huang, S., Gao, X., Zhou, J., Han, X., Wanyi, G.: Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism. Chin. Opt. Lett. 11(100606), 1–4 (2013)Google Scholar
  98. 98.
    Anliang, Yu., Zou, W., Li, S., Chen, J.: A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM. IEEE J. Photon. 6, 1–6 (2014)Google Scholar
  99. 99.
    Duarte, V.C., Prata, J.G., Ribeiro, C., Nogueira, R.N., Winzer, G., Zimmermann, L., Walker, R., Clements, S., Filipowicz, M., Napierała, M., Nasiłowski, T., Crabb, J., Stampoulidis, L., Anzalchi, J., Drummond, M.V.: Integrated photonic true-time delay beamformer for a ka-band phased array antenna receiver. In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper M2G.5Google Scholar
  100. 100.
    Tessema, N.M., Cao, Z., Van Zantvoort, J.H.C., Mekonnen, K.A., Dubok, A., Tangdiongga, E., Smolders, A.B., Koonen, A.M.J.: A tunable Si3N4 integrated true time delay circuit for optically-controlled K-band radio beamformer. Satell. Commun. J. Lightw. Technol. 34, 4736–4793 (2016)Google Scholar
  101. 101.
    Trinidad, A.M., Tessema, N., Cao, Z., van Zantvoort, J.H.C., Dubok, A., Al-Rawi, A.N.H., Tangdiongga, E., Smolders, A.B., Koonen, A.M.J.: Optical beamformer for K-band smart antenna systems. In: Optical Fiber Communication Conference, OSA Technical Digest, M4 J.2 (2018)Google Scholar
  102. 102.
    Xingyuan, X., Wu, J., Nguyen, T.G., Moein, T., Chu, S.T., Little, B.E., Morandotti, R., Mitchell, A., Moss, D.J.: An optical micro-comb with a 50 GHz free spectral range for photonic microwave true time delays. OSA Photon. Res. J. 1–6 (2017)Google Scholar
  103. 103.
    Xue, X., Xuan, Y., Bao, C., Li, S., Zheng, X., Zhou, B., Qi, M., Weiner, A.M.: Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J. Lightw. Technol. 1–8 (2018)Google Scholar
  104. 104.
    Zhuang, L., Roeloffzen, C.G.H., Heideman, R.G., Borreman, A., Meijerink, A., van Etten, W.: Ring resonator-based single-chip 1 × 8 optical beam forming network in LPCVD waveguide technology. In: Proceedings of 11th IEEE/LEOS Symposium, Benelux, Eindhoven, Netherlands, pp. 45–48 (2006)Google Scholar
  105. 105.
    Liu, Y., Wichman, A., Isaac, B., Kalkavage, J., Adles, E., Clark, T., Klamkin, J: Ring resonator based integrated optical beam forming network with true time delay for mmW communications. In: International Microwave Symposium (IMS), IEEE MTT-S, pp. 1024–1030 (2017)Google Scholar
  106. 106.
    Zhuang, L., Roeloffzen, C.G.H., Heideman, R.G., Borreman, A., Meijerink, A., van Etten, W.: Single-chip ring resonator-based 1 × 8 optical beam forming network in CMOS-compatible waveguide technology. IEEE Photon. Technol. Lett. 15, 1130–1132 (2007)Google Scholar
  107. 107.
    Zhuang, L., Meijerink, A., Roeloffzen, C.G.H., Marpaung, D.A.I., Pena Hevilla, J., van Etten, W., Heideman, G., Leinse, A., Hoekman, M.: Phased array receive antenna steering using a ring resonator-based optical beam forming network and filter-based optical SSB-SC modulation. In: Proceedings of the International Topical Meeting on Microwave Photonics, Victoria, BC Canada, pp. 88–91 (2007)Google Scholar
  108. 108.
    Schippers, H., Verpoorte, J., Jorna, P., Hulzinga, A., Meijerink, A., Roeloffzen, C.G.H., Zhuang, L.I., Marpaung, D.A., van Etten, W., Heideman, R.G., Leinse, A., Borreman, A., Hoekman, M.W.: Broadband conformal phased array with optical beamforming for airborne satellite communication. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, pp. 1–17 (2008)Google Scholar
  109. 109.
    Schippers, H., Verpoorte, J., Jorna, P., Hulzinga, A., Meijerink, A., Roeloffzen, C.G.H., Zhuang, L.I., Marpaung, D.A., van Etten, W., Heideman, R.G., Leinse, A., Borreman, A., Hoekman, M.W.: Broadband optical beamforming for airborne satellite communication. In: Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, pp. 1–19 (2009)Google Scholar
  110. 110.
    Burla, M., et al.: Multiwavelength optical beam forming network with ring resonator-based binary-tree architecture for broadband phased array antenna, systems. In: Proceedings of the LEOS Benelux Symposium, Enschede, The Netherlands, pp. 99–102 (2008)Google Scholar
  111. 111.
    Liu, Y., Sang, F., Pinna, S., Isaac, B., Kalkavage, J., Adles, E., Clark, T., Klamkin, J: International Topical Meeting on Microwave Photonics, Integrated Optical Beamforming Network for Millimeter Wave Communications, pp. 1–4 (2017)Google Scholar
  112. 112.
    Liu, Y., Wichman, A.R., Isaac, B., Kalkavage, J., Adles, E.J., Clark, T.R., Klamkin, J.: Ultra-low-loss silicon nitride optical beamforming network for wideband wireless applications. J. Sel. Top. Quantum Electron. 24, 8300410 (2018)Google Scholar
  113. 113.
    Fetterman, H.R., Chang, Y., Scott, D.C., Forrest, S.R., Espiau, F.M., Wu, M., Plant, D.V., Kelly, J.R., Mather, A., Steier, W.H., Osgood, R.M., Haus, H.A., Simoni, G.J.: Optically controlled phased array radar receiver using SLM switched real time delays. IEEE Microw. Guid. Wave Lett. 5, 414–416 (1995)Google Scholar
  114. 114.
    Dolfi, D., Joffre, P., Antoine, J., Huignard, J.P., Philippet, D., Granger, P.: Experimental demonstration of a phased-array antenna optically controlled with phase and time delays. Appl. Opt. 35, 5293–5300 (1996)Google Scholar
  115. 115.
    Etem, Y., Lewis, M.F.: Design and performance of an optically controlled phased array antenna. In: Technical Digest International Topical Meeting on Microwave Photonics, pp. 209–212 (1996)Google Scholar
  116. 116.
    Wilson, R.A., Ewis, L.M.F., Sample, P., Bunyan, J.: MEMS and their applications in optical signal processing and beamforming for phased array antennas. In: 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2, 538–539(2001)Google Scholar
  117. 117.
    Jofre, L., Stoltidou, C., Blanch, S., Mengual, T., Vidal, B., Marti, J., McKenzie, I., del Cura, J.M.: Optically Beamformed Wideband Array Performance. IEEE Trans. Antenna Wave Propag. 56, 1594–1603 (2008)Google Scholar
  118. 118.
    Caroline, P.E., Kabilan, A.P., Susan Christina, X.: Optical MEMS based signal processor for smart antenna in Mobile broad-band communications. Int. J. Microw. Opt. Technol. 4, 52–59 (2009)Google Scholar
  119. 119.
    Caroline, P.E., Kabilan, A.P., Christina, X.S.: An optical beam former for smart antennas in mobile broadband communication. Int. J. Mob. Commun. 7, 683–694 (2009)Google Scholar
  120. 120.
    Dolfi, D., Bann, S., Huignard, J.P., Roger, J.: Two-dimensional optical architecture for phase and time-delay beam forming in a phased array antenna. In: Proceedings of the Meeting Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, pp. 481–489 (1992)Google Scholar
  121. 121.
    Kobayashi, O., Ogawa, H.: Amplitude and phase control of an RF signal using liquid-crystals by optoelectronic method. IEICE Trans. Electron. E78-C, 1082–1089 (1995)Google Scholar
  122. 122.
    Kobayashi, O., Ogawa, H.: A liquid-crystal control, coherent type optoelectronic phased array antenna beam forming network using polarization multiplex optical heterodyning. IEICE Trans. Electron. E79, 80–86 (1996)Google Scholar
  123. 123.
    Riza, N.A.: Liquid crystal-based optical control of phased array antennas. J. Lightwave Technol. 10, 974–1984 (1991)Google Scholar
  124. 124.
    Riza, N.A.: An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation. IEEE Photon. Technol. Lett. 4, 807–809 (1992)Google Scholar
  125. 125.
    Riza, N.A.: An acoustooptic phased array antenna beamformer with independent phase and carrier control using single sideband signals. IEEE Photon. Technol. Lett. 4, 177–179 (1992)Google Scholar
  126. 126.
    Riza, N.A.: Liquid crystal-based optical time delay units for phased array antennas. J. Lightw. Technol. 12, 1440–1447 (1994)Google Scholar
  127. 127.
    Torras-Rosellb, A., Barrera-Figueroa Danish, S.: An acousto-optic beamformer. J. Opt. Soc. Am. 132, 144–149 (2012)Google Scholar
  128. 128.
    Lin, Y., Ai, Y., Shan, X., et al.: Liquid crystal based nonmechanical beam tracking technology. Opt. Laser Technol. 91, 103–107 (2017)Google Scholar
  129. 129.
    Karabey, O.H., Mehmood, A., Ayluctarhan, M., Braun, H., Letz, M., Jakoby, R.: Liquid crystal based phased array antenna with improved beam scanning capability. Electron. Lett. 50, 426–428 (2014)Google Scholar
  130. 130.
    Zhao, X., Liu, C., Zhang, D., Luo, Y.: Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering. Appl. Opt. 52, 7109–7116 (2013)Google Scholar
  131. 131.
    Yi, X., Huang, T.X.H., Minasian, R.A.: Photonic beamforming based on programmable phase shifters with amplitude and phase control. Photon. Technol. Lett. 23, 1286–1288 (2011)Google Scholar
  132. 132.
    Tong, D.T.K., Wu, M.C.: Common transmit/receive module for multiwavelength optically controlled PAAs. In: Proceedings of Optical Fiber Communication Conference and Exhibit, Technical Digest, pp. 354–355 (2005)Google Scholar
  133. 133.
    Chujo, W., Tomiyama, Y.: An optically controlled microwave phase shifter based on self-heterodyning technique using chirped fiber gratings and an optical frequency shifter. In: Proceedings of Asia-Pacific Microwave Conference, pp. 565–568 (2000)Google Scholar
  134. 134.
    Granieri, S., Jaeger, M., Siahmakoun, A.: Multiple-beam fiber-optic beamformer with binary array of delay lines. J. Lightw. Technol. 21, 6262–6264 (2003)Google Scholar
  135. 135.
    Vidal, B., Mengual, T., Ibanez-Lopez, C.: Fast optical beamforming architectures for satellite-based applications. Adv. Opt. Technol. 2012, 385–409 (2012)Google Scholar
  136. 136.
    Lavrov, A.P., Ivanov, S.I., Saenko, I.I.: Investigation of analog photonics based broadband beamforming system for receiving antenna array. LNCS (Springer) 8638, 647–655f (2014)Google Scholar
  137. 137.
    Tessema, N.M., Trinidad, A.M., Mekonnen, K.A., van Zantvoort, J.H.C., Huijskens, F.M., Cao, Z., Tangdiongga, E., Smolders, A.M., Koonen, A.M.J.: A photonics-assisted beamformer for K-band RF antenna arrays. International topical meeting on microwave photonics, pp. 1–4 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. Elizabeth Caroline
    • 1
    Email author
  • Susan Christina Xavier
    • 2
  • Arunachalam P. Kabilan
    • 3
  • Johnson William
    • 4
  1. 1.Department of Electronics and Communication EngineeringIFET College of EngineeringVillupuramIndia
  2. 2.Department of Electronics and Communication EngineeringM.I.E.T Engineering CollegeTrichyIndia
  3. 3.Department of Electronics and Communication EngineeringVivekanandha College of Engineering for WomenTiruchengoduIndia
  4. 4.Department of Electronics and Communication EngineeringAgnel Institute of Technology and DesignGoaIndia

Personalised recommendations