Advertisement

Photonic Network Communications

, Volume 36, Issue 3, pp 289–300 | Cite as

Sleep assistive dynamic bandwidth assignment scheme for passive optical network (PON)

  • Rizwan Aslam Butt
  • M. Faheem
  • M. Waqar Ashraf
  • Sevia M. Idrus
Original Paper
  • 49 Downloads

Abstract

In passive optical network (PON), in addition to efficient bandwidth management, a dynamic bandwidth assignment (DBA) scheme can also enhance the energy efficiency performance of the optical networks units (ONUs) during sleep mode. A few such green DBA schemes have been proposed in literature for EPON, however, ITU compliant PONs have not got attention. In this study, the role of a DBA scheme during the cyclic sleep mode for XGPON has been investigated. A sleep assistive (SA)-DBA scheme is proposed that not only improves the energy saving performance of cyclic sleep mode but also reduces the upstream delays and variance for all the type-2 (T2), type-3 (T3) and type-4 (T4) traffic classes. Although, the upstream delay of type-1 (T1) traffic class slightly increases, the average upstream delay of all the traffic classes remains below the set target delay limit of 56 ms.

Keywords

Bandwidth efficient Bandwidth assignment Energy efficient PON XGPON 

Notes

Acknowledgements

Funding was provided by Higher Education Commision, Pakistan (SRGP Grant No. 1981).

References

  1. 1.
    Sanou, B.: ICT Facts and Figures 2017. Switzerland, Geneva (2017)Google Scholar
  2. 2.
    Effenberger, F.J.: Industrial trends and roadmap of access. J. Lightwave Technol. 35(5), 1142–1146 (2017)CrossRefGoogle Scholar
  3. 3.
    Klein, T.E., Richard, P.: ICT energy challenges, impact and solutions. In: 19th International ICIN Conference—Innovations in Clouds, Internet and Networks, pp. 281–286Google Scholar
  4. 4.
    Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J.T., Westfall, L.: International energy outlook 2016 with projections to 2040. In: Annual report by the US Energy Information Administration (EIA), vol. DOE/EIA-04, US EIA, Washington, D.C 20585, pp. 1–290 (2016)Google Scholar
  5. 5.
    Mills, M.P.: The Cloud Begins with Coal: Big data, Big Networks, Big infrastructure, and Big power—An Overview of the Electricity use by the Global Digital Ecosystem, pp. 1–48. Digital Power Group, New York (2013)Google Scholar
  6. 6.
    Andrae, A., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 117–157 (2015)CrossRefGoogle Scholar
  7. 7.
    Butt, R.A., Hasunah Mohammad, S., Idrus, S.M., Rehman, S.U.: Evolution of access network from copper to PON—Current status. ARPN J. Eng. Appl. Sci. 10(18), 1–10 (2015)Google Scholar
  8. 8.
    Mahloo, M., Chen, J., Wosinska, L.: PON versus AON: which is the best solution to offload core network by peer-to-peer traffic localization. Opt. Switch. Netw. 15, 1–9 (2015)CrossRefGoogle Scholar
  9. 9.
    Abbas, H.S., Gregory, M.A.: The next generation of passive optical networks: a review. J. Netw. Comput. Appl. 67, 53–74 (2016)CrossRefGoogle Scholar
  10. 10.
    Butt, R.A., Idrus, S.M., Qureshi, K.N., Shah, P.M.A., Zulkifli, N.: An energy efficient cyclic sleep control framework for ITU PONs. Opt. Switch. Netw. 27, 7–17 (2018)CrossRefGoogle Scholar
  11. 11.
    Valcarenghi, L. et al.: Energy efficiency in optical access networks. In: Italian Networking Workshop, pp. 38–40 (2011)Google Scholar
  12. 12.
    Dhaini, A.R., Ho, P.H., Shen, G.: Toward green next-generation passive optical networks. IEEE Commun. Mag. 49(11), 94–101 (2011)CrossRefGoogle Scholar
  13. 13.
    Shi, L., Mukherjee, B., Lee, S.S.: Energy-efficient PON with sleep-mode ONU: progress, challenges, and solutions. IEEE Netw. 26(2), 36–41 (2012)CrossRefGoogle Scholar
  14. 14.
    Nikoukar, A., Hwang, I., Liem, A.T., Wang, C., Lin, Y., Golderzehi, V.: A new QoS-aware green dynamic bandwidth allocation in ethernet passive optical network. In: IEEE International Conference on Intelligent Green Building and Smart Grid (IGBSG) (2014)Google Scholar
  15. 15.
    Ahmed, M., Ahmad, I., Habibi, D.: Green wireless-optical broadband access network: energy and quality-of-service considerations. J. Opt. Commun. Netw. 7(7), 669 (2015)CrossRefGoogle Scholar
  16. 16.
    Khotimsky, D.A., Zhang, D., Yuan, L., Hirafuji, R.O.C., Member, S., Campelo, D.R.: Unifying sleep and doze modes for energy-efficient PON systems. IEEE Commun. Lett. 18(4), 688–691 (2014)CrossRefGoogle Scholar
  17. 17.
    Lee, S.S.W., Li, K.-Y.: Adaptive state transition control for energy-efficient gigabit-capable passive optical networks. Photon Netw. Commun. 30(1), 71–84 (2015)CrossRefGoogle Scholar
  18. 18.
    Hirafuji, R.O.C., Cunha, K.B., Campelo, D.R., Dhaini, A.R., Khotimsky, D.A.: The watchful sleep mode: a new standard for energy efficiency in future access networks. IEEE Commun. Mag. 58(3), 150–157 (2015)CrossRefGoogle Scholar
  19. 19.
    Mahmud, Y.A., Radzi, N.A.M., Abdullah, F., Din, N.M.: Fuzzy-logic based NSR DBA for upstream GPON. In: EEE 12th Malaysia International Conference on Communications (MICC), pp. 169–174 (2015)Google Scholar
  20. 20.
    Bang, H., Kim, S., Lee, D.-S., Park, C.-S.: Dynamic bandwidth allocation method for high link utilization to support NSR ONUs in GPON. In: 12th International Conference on Advanced Communication Technology (ICACT), vol. 1, pp. 1–6 (2010)Google Scholar
  21. 21.
    Walid, A., Chen, A.: Efficient and dynamic bandwidth allocation for non-status reporting gigabit passive optical networks (GPON). In: IEEE International Conference on Communications, vol. 2015, pp. 1000–1005 (2015)Google Scholar
  22. 22.
    He, R., Xie, H., Fang, X.: A long-term proportional fair dynamic bandwidth allocation scheme for EPON. In: 2016 25th Wireless and Optical Communication Conference (WOCC), pp. 1–5 (2016)Google Scholar
  23. 23.
    Hossen, M., Saha, S.: Thread guaranteed algorithm for real time traffic in multi-threaded polling of PON-based open access network. In: International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 290–295 (2017)Google Scholar
  24. 24.
    Kanonakis, K., Tomkos, I.: Offset-based scheduling with flexible intervals for evolving GPON networks. J. Lightwave Technol. 27(15), 3259–3268 (2009)CrossRefGoogle Scholar
  25. 25.
    Han, M.S., Yoo, H., Lee, D.S.: Development of efficient dynamic bandwidth allocation algorithm for XGPON. ETRI J. 35(1), 18–26 (2013)CrossRefGoogle Scholar
  26. 26.
    Butt, R.A., Idrus, S.M., Rehman, S.-U., Shah, P.M.A., Zulkifli, N.: Comprehensive polling and scheduling mechanism for long reach gigabit passive optical network. J. Opt. Commun. (2017).  https://doi.org/10.1515/joc-2017-0026 CrossRefGoogle Scholar
  27. 27.
    Butt, R.A., Idrus, S.M., Zulkifli, N., Ashraf, M.W.: A survey of energy conservation schemes for present and next generation passive optical networks. J. Commun. 13(3), 129–140 (2018)CrossRefGoogle Scholar
  28. 28.
    Yan, Y., et al.: Energy management mechanism for ethernet passive optical networks (EPONs). In: IEEE International Conference on Communications (ICC), pp. 1–5 (2010)Google Scholar
  29. 29.
    Van Pham, D., Valcarenghi, L., Chincoli, M., Castoldi, P.: Experimental evaluation of a sleep-aware dynamic bandwidth allocation in a multi-ONU 10G-EPON testbed. Opt. Switch. Netw. 14(Part1), 11–24 (2014)CrossRefGoogle Scholar
  30. 30.
    Dixit, A., Lannoo, B., Colle, D., Pickavet, M., Demeester, P.: ONU power saving modes in next generation optical access networks: progress, efficiency and challenges. Opt. Express 20(26), B52–B63 (2012)CrossRefGoogle Scholar
  31. 31.
    Dixit, A., Lannoo, B., Colle, D., Pickavet, M., Demeester, P.: Energy efficient dynamic bandwidth allocation for ethernet passive optical networks: overview, challenges, and solutions. Opt. Switch. Netw. 18, 169–179 (2015)CrossRefGoogle Scholar
  32. 32.
    Li, C., Guo, W., Hu, W., Xia, M.: Energy-efficient dynamic bandwidth allocation for EPON networks with sleep mode ONUs. Opt. Switch. Netw. 15, 121–133 (2015)CrossRefGoogle Scholar
  33. 33.
    Nikoukar, A.A., Hwang, I.S., Liem, A.T., Wang, C.J.: QoS-aware energy-efficient mechanism for sleeping mode ONUs in enhanced EPON. Photon Netw. Commun. 30(1), 59–70 (2015)CrossRefGoogle Scholar
  34. 34.
    Dias, M.P.I., Wong, E.: Sleep/doze controlled dynamic bandwidth allocation algorithms for energy-efficient passive optical networks. Opt. Express 21(8), 9931–9946 (2013)CrossRefGoogle Scholar
  35. 35.
    Wong, S.W., Valcarenghi, L., Yen, S.H., Campelo, D.R., Yamashita, S., Kazovsky, L.: Sleep mode for energy saving PONs: advantages and drawbacks. In: IEEE Globecom Workshops, pp. 1–6 (2009)Google Scholar
  36. 36.
    Butt, R.A., Idrus, S.M., Qureshi, K.N., Zulkifli, N., Mohammad, S.H.: Improved dynamic bandwidth allocation algorithm for XGPON. J. Opt. Commun. Netw. 9(1), 87–97 (2017)CrossRefGoogle Scholar
  37. 37.
    Butt, R.A., Idrus, S.M., Zulkifli, N., Ashraf, M.W.: Comprehensive bandwidth utilization and polling mechanism for XGPON. Int. J. Commun. Syst. 31, e3475 (2017)CrossRefGoogle Scholar
  38. 38.
    Butt, R.A., Idrus, S.M., Qureshi, K.N., Shah, P.M.A., Zulkifli, N.: An energy efficient cyclic sleep control framework for ITU PONs. Opt. Switch. Netw. 27, 7–17 (2018)CrossRefGoogle Scholar
  39. 39.
    Bokhari, M., Sohail, M., Kasi, J.K., Kasi, A.K.: Performance analysis of passive optical networks with energy saving through the integrated sleep mode. Opt. Switch. Netw. 21, 16–30 (2016)CrossRefGoogle Scholar
  40. 40.
    Skubic, B., Hood, D.: Evaluation of ONU power saving modes for gigabit-capable passive optical networks. IEEE Netw. 25(2), 20–24 (2011)CrossRefGoogle Scholar
  41. 41.
    Butt, R.A., Idrus, S.M., Qureshi, K.N.: Improved dynamic bandwidth allocation algorithm for XGPON. J. Opt. Commun. Netw. 9(1), 87–97 (2017)CrossRefGoogle Scholar
  42. 42.
    Hirafuji, R.O.C., Dhaini, A., Khotimsky, D.: Energy efficiency analysis of the watchful sleep mode in next-generation passive optical networks. In: IEEE Symposium on Computers and Communication (ISCC), pp. 689–695 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LCRG Group, Department of Electrical EngineeringUniversity Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Electronic EngineeringNED University of Engineering and TechnologyKarachiPakistan
  3. 3.Department of Computer EngineeringBahuddin Zakariya UniversityMultanPakistan
  4. 4.Department of Computer EngineeringAbdullah Gul UniversityKayseriTurkey

Personalised recommendations