Photonic Network Communications

, Volume 37, Issue 1, pp 90–99 | Cite as

A modified topology achieved in OFDM/SAC-OCDMA-based multi-diagonal code for enhancing spectral efficiency

  • Bedir Yousif
  • Ibrahim El. MetwallyEmail author
  • Ahmed Shaban Samra
Original Paper


In this paper, a modified topology-based orthogonal frequency division multiplexing–spectral amplitude coding in optical code division multiple access (OFDM–SAC-OCDMA) has been introduced. Such analysis aims to explain the effect of spectral efficiency with respect to multi-diagonal (MD) code. The new proposed technique introduces a fusion system between the two-code keying scheme and the forward error correction (FEC). The introduced analysis has targeted the effect of signal-to-noise ratio, bit error rate, and spectral efficiency with the presence of beat noise, phase incoherent intensity noise, and thermal noise. Numerical simulations have been utilized and tested in order to illustrate the validation of the (MD) code method to eliminate dominant noise. The calculation results show the following; the SNR and BER for MD under the presence of the previous discussed signal degradation is equal 161 and 1.2 × 10−10, respectively, according to a predefined number of users 150 comparing with some existing codes such as: modified frequency hopping code, Hadamard (HD) code, modified quadratic congruence code. The proposed unipolar encoding with direct detection technique-based OFDM/SAC-OCDMA scheme achieves an enhancement in the performance of SE over the unipolar encoding with direct detection technique-based SAC-OCDMA technique by 3.455 dB. The proposed two keying scheme-based OFDM/SAC-OCDMA introduces an enhancement in the performance of the SE over the unipolar encoding with direct detection technique-based OFDM/SAC-OCDMA technique by 2.8859 dB. FEC has been applied in order to increase the spectral efficiency for different BERs, which the numerical results show that FEC provides 1.7457 dB. Finally, the total enhancement for SE was about 8.0866 dB.


Orthogonal frequency division multiplexing–spectral amplitude coding–optical code division multiple access Multi-diagonal Signal–noise ratio Bit error rate Spectral efficiency 


  1. 1.
    Imtiaz, W.A.: Design of high-capacity spectral amplitude coding ocdma system with single photo-diode detection technique. Arab. J. Sci. Eng. 43(6), 2769–2777 (2018)CrossRefGoogle Scholar
  2. 2.
    Bhanja, U., Khuntia, A.: Performance analysis of a SAC-OCDMA FSO network. In: Signal Processing, Computing and Control (ISPCC), 21–23 Sept 2017Google Scholar
  3. 3.
    Aljunid, S.A., Ismail, M., Ramli, A.R., Ali, B.M., Abdullah, M.K.: A new family of optical code sequences for spectral amplitude-coding optical CDMA systems. IEEE Photon Technol. Lett. 16, 2383–2385 (2004)CrossRefGoogle Scholar
  4. 4.
    Bakarman, H.A., Eltaif, T., Menon, P.S., Muqaibel, M., Shaari, S.: OCDMA optical access network based on OCDMA systems: transmission and security performance. Int. J. Commun. 7, 35–41 (2013)Google Scholar
  5. 5.
    Rochette, M., Ayotte, S.: Analysis of the spectral efficiency of frequency-encoded OCDMA systems with incoherent sources. J. Lightwave Technol. 23(4), 1610–1619 (2005)CrossRefGoogle Scholar
  6. 6.
    Bajpai, R., Srivastava, N.: Performance enhancement of SPD technique in SAC-OCDMA systems. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 9, 59–64 (2014)CrossRefGoogle Scholar
  7. 7.
    Ateeq, F.: Performance analysis of spectral amplitude coding OCDMA detection techniques. J. Emerg. Trends Appl. Eng. (JETAE) 1(3), 1–10 (2016)Google Scholar
  8. 8.
    Cherifi, A., Yagoubi, B., Bouazza, B.S., Dahman, A.O.: New method for the construction of optical zero cross correlation code using block matrices in OCDMA-OFDM system. J. Telecommun. Electron. Comput. Eng. 8(1), 33–39 (2016)Google Scholar
  9. 9.
    Aldhaibani, A.O., Aljunid, S.A., Anuar, M.S., Arief, A.R.: Enhancement of performance of multi diagonal code OCDMA system using OFDM technique. Appl. Mech. Mater. 679, 30–34 (2014)CrossRefGoogle Scholar
  10. 10.
    Singh, H., Sheetal, A., Singh, M.: Performance analysis of 2D multi-diagonal code for OCDMA system. Int. Res. J. Eng. Technol. (IRJET) 03, 1282–1287 (2016)Google Scholar
  11. 11.
    Hussein, T., Aljunid, S.A., Fadhil, H.A.: Performance improvement of hybrid SCM SAC-OCDMA networks using multi-diagonal csode. Sci. Res. Essays 7, 1262–1272 (2012)Google Scholar
  12. 12.
    Fadhil, H.A., Junid, S.A., Ahmad, R.B.: Effects of the random diagonal code link parameters on the performance of an OCDMA scheme for high-speed access networks. Opt. Fiber Technol. 15, 237–241 (2009)CrossRefGoogle Scholar
  13. 13.
    Motealleh, M., Maesoumi, M.: Simulation of a SAC-OCDMA 10 User ×15 Gb/s system using MD code. Int. J. Opt. Appl. 4, 20–26 (2014)Google Scholar
  14. 14.
    Ahmed, I.S., Aljunid, A., Rashidi, B.M., Al dulaimi, A.: high performance with avalanche photodiode in wavelength/time optical code division multiple access. Aust. J. Basic Appl. Sci. 10(15), 306–314 (2016)Google Scholar
  15. 15.
    Anaman, J.O., Prince, S.: Improvement in the spectral efficiency achieved in OCDMA using 1 dimensional OOCs. In: Proceedings of the World Congress on Engineering, London, UK, July 4–6, 2012Google Scholar
  16. 16.
    Karbassiana, M.M., Küppersa, F.: Enhancing spectral efficiency and capacity in synchronous OCDMA by transposed-MPC. Opt. Switch. Netw. 9(2), 130–137 (2012)CrossRefGoogle Scholar
  17. 17.
    Rochette, M., Rusch, L.A.: Spectral efficiency of OCDMA systems with coherent pulsed sources. J. Lightwave Technol. 23(3), 1033–1038 (2005)CrossRefGoogle Scholar
  18. 18.
    Ayotte, S., Rusch, L.A.: Increasing the capacity of SAC-OCDMA: forward error correction or coherent sources. IEEE J. Sel. Top. Quantum Electron. 13(5), 1422–1428 (2007)CrossRefGoogle Scholar
  19. 19.
    Durand, F.R., Abrão, T.: Energy efficiency in optical CDMA networks with forward error correction. Photonic Netw. Commun. 13, 1–10 (2016)CrossRefGoogle Scholar
  20. 20.
    Aljunid, S.A., Amphawan, A.: Improving spectral efficiency of SAC-OCDMA systems by SPD scheme. IEICE Electron. Express 9(24), 1829–1834 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bedir Yousif
    • 1
  • Ibrahim El. Metwally
    • 2
    Email author
  • Ahmed Shaban Samra
    • 3
  1. 1.Faculty of EngineeringKafrelsheikh UniversityKafr el-SheikhEgypt
  2. 2.Miser Higher Institute for Engineering and TechnologyMansouraEgypt
  3. 3.Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations