Advertisement

Photonic Network Communications

, Volume 37, Issue 1, pp 83–89 | Cite as

Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides

  • Fatemeh Haddadan
  • Mohammad SorooshEmail author
Original Paper
  • 28 Downloads

Abstract

In this paper, we propose an all-optical 8-to-3 encoder based on photonic crystal. The structure includes 17 waveguides to make the appropriate connections between the input and the output ports. Interference at cross-connects of the waveguides results in light propagation in the desired paths. This issue reduces the needed optical intensity at input ports as well as 100 mW/μm2. Low-power operation of the structure avoids the occurrence of nonlinear effects. Also, neither resonant cavity nor resonant ring is employed in the structure which makes possible to operate at a wide range of photonic bandgaps. The maximum delay time for the presented device is obtained about 5 ps. The total footprint of the proposed structure is 510 μm2, which means it can be employed in optical integrated circuits.

Keywords

Optical encoder Optical waveguide Photonic bandgap Photonic crystal 

References

  1. 1.
    John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  2. 2.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  3. 3.
    Diaz-Valencia, B.F., Calero, J.M.: Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505, 74 (2014)CrossRefGoogle Scholar
  4. 4.
    Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Int. J. Light Electron Opt. 123, 534 (2012)CrossRefGoogle Scholar
  5. 5.
    Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1 (2013)CrossRefGoogle Scholar
  6. 6.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commun. 36, 1 (2015)CrossRefGoogle Scholar
  7. 7.
    Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Int. J. Light Electron Opt. 126, 4775 (2015)CrossRefGoogle Scholar
  8. 8.
    Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Int. J. Light Electron Opt. 124, 2639 (2013)CrossRefGoogle Scholar
  9. 9.
    Zavvari, M., Mehdizadeh, F.: Photonic crystal cavity with L3-defect for resonant optical filtering. Frequenz 68, 519 (2014)CrossRefGoogle Scholar
  10. 10.
    Zamani, M.: Photonic crystal-based optical filters for operating in second and third optical fiber windows. Superlattices Microstruct. 92, 157 (2016)CrossRefGoogle Scholar
  11. 11.
    Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 1 (2013)CrossRefGoogle Scholar
  12. 12.
    Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostruct. 56, 211 (2014)CrossRefGoogle Scholar
  13. 13.
    Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Int. J. Light Electron Opt. 125, 1534 (2014)Google Scholar
  14. 14.
    Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Int. J. Light Electron Opt. 123, 167 (2012)CrossRefGoogle Scholar
  15. 15.
    Youcef Mahmoud, M., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368 (2012)CrossRefGoogle Scholar
  16. 16.
    Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Int. J. Light Electron Opt. 124, 2864 (2013)CrossRefGoogle Scholar
  17. 17.
    Taalbi, A., Bassou, G., Youcef Mahmoud, M.: New design of channel drop filters based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 824 (2013)CrossRefGoogle Scholar
  18. 18.
    Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Int. J. Light Electron Opt. 124, 4416 (2013)CrossRefGoogle Scholar
  19. 19.
    Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostruct. 63, 304 (2014)CrossRefGoogle Scholar
  20. 20.
    Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013)CrossRefGoogle Scholar
  21. 21.
    Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015)Google Scholar
  22. 22.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274 (2012)CrossRefGoogle Scholar
  24. 24.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Netw. Commun. 29, 146 (2014)CrossRefzbMATHGoogle Scholar
  25. 25.
    Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65 (2016)CrossRefGoogle Scholar
  26. 26.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5964 (2013)CrossRefzbMATHGoogle Scholar
  27. 27.
    Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Int. J. Light Electron Opt. 124, 5923 (2013)CrossRefGoogle Scholar
  28. 28.
    Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications. Opt. Quantum Electron. 45, 1 (2013)CrossRefGoogle Scholar
  29. 29.
    Alipour-Banaei, H., Mehdizadeh, F.: High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun. 33, 152 (2017)CrossRefGoogle Scholar
  30. 30.
    Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer–demultiplexer switches. Opt. Quantum Electron. 42, 425 (2011)CrossRefGoogle Scholar
  31. 31.
    Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Mod. Opt. 64, 1233 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, T., Li, Q., Gao, D.: Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis. Chin. Sci. Bull. 54, 3662 (2009)Google Scholar
  33. 33.
    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109 (2014)CrossRefzbMATHGoogle Scholar
  34. 34.
    Yanik, M.F., Fan, S., Soljačić, M., Joannopoulos, J.D.: All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506 (2003)CrossRefGoogle Scholar
  35. 35.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)CrossRefGoogle Scholar
  37. 37.
    Haq Shaik, E., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1 (2016)CrossRefGoogle Scholar
  38. 38.
    Pirzadi, M., Mir, A., Bodaghi, D.: Realization of ultra-accurate and compact all-optical photonic crystal OR logic gate. IEEE Photonics Technol. Lett. 28, 2387 (2016)CrossRefGoogle Scholar
  39. 39.
    Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 377, 148 (2014)Google Scholar
  40. 40.
    Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32, 2260 (2015)CrossRefGoogle Scholar
  41. 41.
    Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure. Opt. Commun. 332, 359 (2014)CrossRefGoogle Scholar
  42. 42.
    Fasihi, K.: Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals. Int. J. Light Electron Opt. 127, 4669 (2016)CrossRefGoogle Scholar
  43. 43.
    Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quantum Electron. 47, 3689 (2015)CrossRefzbMATHGoogle Scholar
  44. 44.
    Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013)CrossRefGoogle Scholar
  45. 45.
    Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231 (2016)CrossRefGoogle Scholar
  46. 46.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Int. J. Light Electron Opt. 130, 1214 (2017)CrossRefzbMATHGoogle Scholar
  47. 47.
    Afzal, S., Ahmadi, V., Ebnali-Heidari, M.: All-optical tunable photonic crystal nor gate based on the nonlinear Kerr effect in a silicon nanocavity. J. Opt. Soc. Am. B 30, 2535 (2013)CrossRefGoogle Scholar
  48. 48.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Int. J. Light Electron Opt. 125, 5701 (2014)CrossRefGoogle Scholar
  49. 49.
    Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35 (2016)Google Scholar
  50. 50.
    Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 83, 101 (2016)CrossRefGoogle Scholar
  51. 51.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017)CrossRefGoogle Scholar
  52. 52.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)CrossRefGoogle Scholar
  53. 53.
    Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)CrossRefGoogle Scholar
  54. 54.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low Dimens. Syst. Nanostruct. 75, 77 (2016)CrossRefGoogle Scholar
  55. 55.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440 (2016)CrossRefGoogle Scholar
  56. 56.
    Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Int. J. Light Electron Opt. 126, 2368 (2015)CrossRefGoogle Scholar
  57. 57.
    Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735 (2015)CrossRefGoogle Scholar
  58. 58.
    Lee, S.G., Oh, S.S., Kim, J., Park, H.Y., Kee, C.S.: Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett. 87, 181106 (2005)CrossRefGoogle Scholar
  59. 59.
    Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)CrossRefGoogle Scholar
  60. 60.
    Yu, X., Fan, S.: Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83, 3251 (2003)CrossRefGoogle Scholar
  61. 61.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017)CrossRefGoogle Scholar
  62. 62.
    Salimzadeh, A., Alipour-Banaei, H.: An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt. Commun. 410, 793 (2018)CrossRefGoogle Scholar
  63. 63.
    Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)CrossRefGoogle Scholar
  64. 64.
    Tavlove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (1995)Google Scholar
  65. 65.
    Bucher, K., Bruns, J., Wagemann, H.G.: Absorption coefficient of silicon: an assessment of measurements and the simulation of temperature variation. J. Appl. Phys. 75, 1127 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations