Advertisement

Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder

  • Mohammad Reza Jalali-Azizpoor
  • Mohammad Soroosh
  • Yousef Seifi-Kavian
Original Paper

Abstract

In this paper an all-optical half-adder was proposed by using self-collimation effect in two-dimensional photonic crystals. Self-collimation effect was obtained in XM direction for wavelength 1500 nm by using square lattice rod-type photonic crystal structure. Plane wave expansion and finite-difference time-domain methods were used to obtain the band structure diagram and simulate the optical behavior of the proposed structure, respectively. The maximum delay time and required input intensity are 1 ps and 54 mW/μm2, respectively. The normalized power-level margins for logics 0 and 1 were obtained to be about 20 and 70%, respectively. The total footprint of the structure is about 75 μm2, which is suitable for all optical integrated circuits.

Keywords

Photonic crystal Self-collimation Kerr effect Half-adder 

References

  1. 1.
    Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRefGoogle Scholar
  2. 2.
    John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRefGoogle Scholar
  3. 3.
    Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013)CrossRefGoogle Scholar
  4. 4.
    Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)CrossRefGoogle Scholar
  5. 5.
    Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt. Int. J. Light Electron. Opt. 123, 534–536 (2012)CrossRefGoogle Scholar
  6. 6.
    Pu, S., Dong, S., Huang, J.: Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides. J. Opt. 16, 045102 (2014)CrossRefGoogle Scholar
  7. 7.
    Soljačić, M., Johnson, S.G., Fan, S., Ibanescu, M., Ippen, E., Joannopoulos, J.D.: Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B. 19, 2052 (2002)CrossRefGoogle Scholar
  8. 8.
    Vlasov, Y.A., O’Boyle, M., Hamann, H.F., McNab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)CrossRefGoogle Scholar
  9. 9.
    Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photonics Nanostructures Fundam. Appl. 19, 1–11 (2016)CrossRefGoogle Scholar
  10. 10.
    Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)CrossRefGoogle Scholar
  11. 11.
    Witzens, J., Loncar, M., Scherer, A.: Self-collimation in planar photonic crystals. IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002)CrossRefGoogle Scholar
  12. 12.
    Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212 (1999)CrossRefGoogle Scholar
  13. 13.
    Rani, P., Kalra, Y., Sinha, R.K.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298–299, 227–231 (2013)CrossRefGoogle Scholar
  14. 14.
    Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostructures Fundam. Appl. 21, 44–51 (2016)CrossRefGoogle Scholar
  15. 15.
    Tavousi, A., Mansouri-Birjandi, M.A., Ghadrdan, M., Ranjbar-Torkamani, M.: Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photonic Netw. Commun. 34, 131–139 (2017)CrossRefGoogle Scholar
  16. 16.
    Musavizadeh, S.M., Soroosh, M., Mehdizadeh, F.: Optical filter based on photonic crystal. Indian J. Pure Appl. Phys. 53, 736–739 (2015)Google Scholar
  17. 17.
    Qiang, Z., Zhou, W., Soref, R.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)CrossRefGoogle Scholar
  18. 18.
    Ying, C., Jing, D., Jia, S., Qiguang, Z., Weihong, B.: Study on tunable filtering performance of compound defect photonic crystal with magnetic control. Opt. Int. J. Light Electron Opt. 126, 5353–5356 (2015)CrossRefGoogle Scholar
  19. 19.
    Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-dimensional Syst. Nanostructures 87, 77–83 (2017)CrossRefGoogle Scholar
  20. 20.
    Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)CrossRefGoogle Scholar
  21. 21.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127, 8706–8709 (2016)CrossRefGoogle Scholar
  22. 22.
    Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl. 46, 553–564 (2016)Google Scholar
  23. 23.
    Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt. 140, 331–337 (2017)CrossRefGoogle Scholar
  24. 24.
    Naoum, R., Bouamami, S.: Temperature effect on the tenability of an eight-channel demultiplexer. Opt. Int. J. Light Electron Opt. 125, 5164–5166 (2014)CrossRefGoogle Scholar
  25. 25.
    Zavvari, M.: Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications. J. Opt. Commun. Published online (2017)Google Scholar
  26. 26.
    Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)CrossRefGoogle Scholar
  27. 27.
    Jiu-Sheng, L., Han, L., Le, Z.: Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt. Commun. 350, 248–251 (2015)CrossRefGoogle Scholar
  28. 28.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48(1), 20 (2016)CrossRefGoogle Scholar
  29. 29.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2 × 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Ouahab, I., Naoum, R.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016)CrossRefGoogle Scholar
  32. 32.
    Teo, H.G., Liu, A.Q., Singh, J., Yu, M.B., Bourouina, T.: Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst. Technol. 10, 400–406 (2004)CrossRefGoogle Scholar
  33. 33.
    Bai, J., Wang, J., Jiang, J., Chen, X., Li, H., Qiu, Y., Qiang, Z.: Photonic not and nor gates based on a single compact photonic crystal ring resonator. Appl. Opt. 48, 6923–6927 (2009)CrossRefGoogle Scholar
  34. 34.
    Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C., Moniem, T.A., Tang, C., Dou, X., Lin, Y., Yin, H., Wu, B., Zhao, Q., Fu, Y., Hu, X., Gong, Q., Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K., Rani, P., Kalra, Y., Sinha, R.K.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 377, 148–155 (2014)Google Scholar
  35. 35.
    Saidani, N., Belhadj, W., AbdelMalek, F.: Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena. Opt. Quantum Electron. 47, 1829–1846 (2014)CrossRefGoogle Scholar
  36. 36.
    Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)CrossRefGoogle Scholar
  37. 37.
    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)CrossRefMATHGoogle Scholar
  38. 38.
    Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)CrossRefGoogle Scholar
  39. 39.
    Lee, K.-Y., Lin, J.-M., Yang, Y.-C., Yang, Y.-B., Wu, J.-S., Lin, Y.-J., Lee, W.-Y.: The designs of XOR logic gates based on photonic crystals. In: Proc. SPIE 2008, vol. 1Google Scholar
  40. 40.
    Fasihi, K.: Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals. Optik (Stuttg) 127, 4669–4674 (2016)CrossRefGoogle Scholar
  41. 41.
    Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)CrossRefGoogle Scholar
  42. 42.
    Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2015)CrossRefGoogle Scholar
  43. 43.
    Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2016)CrossRefGoogle Scholar
  44. 44.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimensional Syst. Nanostructures 75, 77–85 (2016)CrossRefGoogle Scholar
  45. 45.
    Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017)CrossRefGoogle Scholar
  46. 46.
    Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2015)CrossRefGoogle Scholar
  47. 47.
    Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)CrossRefGoogle Scholar
  48. 48.
    Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Modern Opt. 64, 1–7 (2017)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. Published online (2017)Google Scholar
  50. 50.
    Chattopadhyay, T., Roy, J.N.: An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder. J. Opt. A: Pure Appl. Opt. 11, 075501 (2009)CrossRefGoogle Scholar
  51. 51.
    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2 × 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2015)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Zhang, C., Qiu, K.: Design and analysis of coherent OCDM en/decoder based on photonic crystal. Opt. Lasers Eng. 46, 582–589 (2008)CrossRefGoogle Scholar
  53. 53.
    Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E 83, 101–106 (2016)CrossRefGoogle Scholar
  54. 54.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)CrossRefGoogle Scholar
  55. 55.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quant. Electron. 49(1), 38 (2017)CrossRefGoogle Scholar
  56. 56.
    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)CrossRefGoogle Scholar
  57. 57.
    Xu, C., Liu, X.: Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Opt. Lett. 28, 986–988 (2003)CrossRefGoogle Scholar
  58. 58.
    Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)CrossRefGoogle Scholar
  59. 59.
    Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)CrossRefGoogle Scholar
  60. 60.
    Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. Published online (2017)Google Scholar
  61. 61.
    Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photon Netw. Commun. 33(2), 159–165 (2017)CrossRefGoogle Scholar
  62. 62.
    Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRefGoogle Scholar
  63. 63.
    Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostructures Fundam. Appl. 24, 29–34 (2017)CrossRefGoogle Scholar
  64. 64.
    Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)CrossRefGoogle Scholar
  65. 65.
    Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. Published online (2017)Google Scholar
  66. 66.
    Rahmani, A., Mehdizadeh, F.: Application of nonlinear PhCRRs in realizing all optical half-adder. Opt. Quantum Electron. 50, 30–35 (2017)CrossRefGoogle Scholar
  67. 67.
    Mano, M.M.: Digital logic and computer design. Pearson Education India, (2017)Google Scholar
  68. 68.
    Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)CrossRefGoogle Scholar
  69. 69.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method Artech House. Norwood, MA (1995)MATHGoogle Scholar
  70. 70.
    Qiu, M.: Effective index method for heterostructure slab waveguide based two dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations