Advertisement

On the performance of blue–green waves propagation through underwater optical wireless communication system

  • Abbas Alipour
  • Ali Mir
Original Paper
  • 13 Downloads

Abstract

The present study proposed a high-data-rate underwater optical wireless communication (UOWC) system to propagate the laser blue–green waves through water. The presented study not only focuses on analysis of challenges in UOWC link including attenuation, absorption, scattering and turbulence model, but also investigates the performance of the proposed system using two different methods of balanced modulation schemes. Spectrum efficiency of the system can be improved by using appropriate modulation formats. Return-to-zero differential phase shift keying (RZ-DPSK) and non-return-to-zero differential phase shift keying (NRZ-DPSK) schemes are two modulation formats that we investigate them to improve the characteristics of the proposed UOWC system. The paper explains a real model and exhaustive analysis for advanced UOWC works by using channel model and modulation formats for presented underwater link. Performance of the proposed system under different modulation schemes and physical aspects of UOWC is studied with several parameters like max quality factor, min bit error rate (BER) and eye diagram. For clear ocean, the performance of the proposed system is good and min BER less than 10−90 for two modulation formats. Generally, results at different condition show that the operation of NRZ-DPSK modulation has better performance than RZ-DPSK scheme.

Keywords

UOWC Scattering Spectrum efficiency NRZ-DPSK BER 

References

  1. 1.
    Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2358 (2014)CrossRefGoogle Scholar
  2. 2.
    Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics. J. Opt. Netw. 2(6), 178–200 (2003)Google Scholar
  3. 3.
    Ghassemlooy, Z., Popoola, W.O.: Terrestrial Free-Space Optical Communications. pp. 356–392, InTech, London (2010)Google Scholar
  4. 4.
    Killinger, D.: Free space optics for laser communication through the air. Opt. Photonics News 13(10), 36–42 (2002)CrossRefGoogle Scholar
  5. 5.
    Yi, X., Li, Z., Liu, Z.: Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt. 54(6), 1273–1278 (2015)CrossRefGoogle Scholar
  6. 6.
    Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Open Access 4, 1518–1547 (2016)CrossRefGoogle Scholar
  7. 7.
    Jaruwatanadilok, S.: Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE J. Sel. Areas Commun. 26(9), 1620–1627 (2008)CrossRefGoogle Scholar
  8. 8.
    Oubei, H.M., Li, C., Park, K.H., Ng, T.K., Alouini, M.S., Ooi, B.S.: 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Exp. 23(16), 20743–20748 (2015)CrossRefGoogle Scholar
  9. 9.
    Haris, M.: Advanced Modulation Formats for High-Bit-Rate Optical Networks, USA (2008)Google Scholar
  10. 10.
    Lin, A., Lu, W., Xu, J., Song, H., Qu, F., Han, J., Gu, X., Leng, J.: Underwater wireless optical communication using a directly modulated semiconductor laser. In: OCEANS 2015—Genova, pp. 1–4. May (2015)Google Scholar
  11. 11.
    Ali, M.A.A.: Comparison of modulation techniques for underwater optical wireless communication employing APD receivers. Res. J. Appl. Sci. Eng. Technol. 10(6), 707–715 (2015)Google Scholar
  12. 12.
    Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling With MATLAB. CRC Press, Boca Raton (2013)Google Scholar
  13. 13.
    Fan, Y., Green, R.J.: Comparison of pulse position modulation and pulse width modulation for application in optical communications. Opt. Eng. 46(6), 065001 (2007)CrossRefGoogle Scholar
  14. 14.
    Doniec, M., Rus, D.: Bidirectional optical communication with Aqua Optical II. In: Proceedings of IEEE International Conference on Communication Systems, pp. 390–394 (2010)Google Scholar
  15. 15.
    Spinrad, R.W., Carder, K.L., Perry, M.J.: Ocean Optics. Clarendon, Oxford (1994)Google Scholar
  16. 16.
    Xu, Z., Guo, X., Shen, L., Yue, D.K.P.: Radiative transfer in ocean turbulence and its effect on underwater light field. J. Geophys. Res. 117(7), 2–14 (2012)Google Scholar
  17. 17.
    Liu, W., Xu, Z., Yang, L.: SIMO detection schemes for underwater optical wireless communication under turbulence. Photon. Res. 3(3), 48–53 (2015)CrossRefGoogle Scholar
  18. 18.
    Hou, W.: A simple underwater imaging model. Opt. Lett. 34(17), 2688–2690 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Haris, Advanced Modulation Formats for High-Bit-Rate Optical Networks, Aug. 2008, USAGoogle Scholar
  20. 20.
    Cai, J.X., Davidson, C.R., Foursa, D.G., Liu, L.: Experimental comparison of the RZ-DPSK and NRZ-DPSK modulation formats. In: Optical Fiber Communication Conference, vol. 4 (2005)Google Scholar
  21. 21.
    Bowers, J., Burrus, C.: Ultrawide-band long-wavelength p-i-n photodetectors. J. Lightw. Technol. 5(10), 1339–1350 (1987)CrossRefGoogle Scholar
  22. 22.
    Tang, S., Dong, Y., Zhang, X.: Impulse response modeling for underwater wireless optical communication links. IEEE Trans. Commun. 62(1), 226–234 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentLorestan UniversityKhorramabadIran

Personalised recommendations