Advertisement

Photonic Network Communications

, Volume 36, Issue 3, pp 301–308 | Cite as

4 × 10 Gbps WDM repeaterless transmission system using asymmetrical dispersion compensation for rural area applications

  • K. Khairi
  • H. Fong Kok
  • Z. Lambak
  • M. I. Abdan
  • M. A. F. Musa
  • M. H. Othman
  • M. L. H. Jamaluddin
  • S. A. Mohamad Rofie
  • C. Tee Din
  • K. Chia Ching
  • A. Mohd. Ramli
  • M. A. Mokhtar
  • S. A. Syed Ahmad
  • I. Ramli
  • M. Mokhtar
  • S. B. Ahmad Anas
  • M. A. Mahdi
Original Paper
  • 66 Downloads

Abstract

We demonstrate experimentally 4 × 10 Gbps wavelength division multiplexing repeaterless transmission system using non-return-to-zero differential phase-shift keying modulation format over 300-km standard single-mode fiber. The channels used were 1546.9, 1547.7, 1548.51 and 1549.2 nm with 100 GHz spacing. In this system design, a dispersion compensation module is used; multi-channel-chirped fiber Bragg grating was deployed with asymmetrical configuration with different compositions of dispersion values at the transmitting and the receiving sides. The transmission system was pumped bidirectionally with 1445 and 1455 nm wavelength in a forward direction, and three pump wavelengths of 1430, 1440 and 1450 nm are deployed for the backward direction. The total on–off Raman gain is 47 dB from total pump power of 1.862 W. The result for dispersion pre-compensation of − 2006.0 and − 2338.3 ps/nm has minimal effect on nonlinearity showing the best performance for 300-km repeaterless transmission system.

Keywords

Repeaterless NRZ-DPSK Dispersion compensation module Multi-channel-chirped fiber Bragg grating Asymmetrical dispersion compensation 

Notes

Acknowledgements

This research was supported by Telekom Malaysia Berhad (TM), and NATP, TM and TM Research & Development Sdn. Bhd. (TMR&D) under the Grant nos. RDTC/110782 and RDTC/140859. We would like to thank our colleagues, Repeaterless team, Project Manager Mr. Sundhar Subramaniam, TMRND for the passion and great work that assisted this research. The author would like to thank Dr. Nizam Tamcheck for the academic advices and expertise throughout the completion of the manuscript.

References

  1. 1.
    Bissessur, H., Brylski, I., Mongardien, D., Bousselet, P.: Unrepeatered systems: state of the art. In: Proceeding Suboptic Industry, pp. 1–5 (2010)Google Scholar
  2. 2.
    Inada, Y., Kanno, Y., Matsuoka, I., Inoue, T., Nakano, T., Ogata, T.: Extremely long-span non-repeatered submarine cable systems & related technologies & equipment. In: Submarine Optic Conference & Convention (SubOptic 2010), no. 1, pp. 1–5 (2010)Google Scholar
  3. 3.
    Rodrigues, J., De Oliveira, F., De Moura, U.C., Eduardo, G., De Paiva, R., De Freitas, A.P., Henrique, L., De Carvalho, H., Parahyba, V.E.: Hybrid EDFA/Raman amplification topology for repeaterless 4.48 Tb/s (40 × 112 Gb/s DP-QPSK) transmission over 302 km of G.652 standard single mode fiber. J. Lightwave Technol. 31(16), 2799–2808 (2013)CrossRefGoogle Scholar
  4. 4.
    Bhandare, S., Joshi, A., Becker, D.: Optical coherent receiver with a switchable electrical dispersion compensator for 10 Gb/s DPSK transmission up to 300 km of SSMF in metro optical networks. J. Lightwave Technol. 28(1), 47–58 (2010)CrossRefGoogle Scholar
  5. 5.
    Wree, C., Bhandare, S.: Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation. Photonics Technol. Lett. 20(6), 407–409 (2008)CrossRefGoogle Scholar
  6. 6.
    Yin, S., Chan, T., Way, W.I.: 100-km DWDM transmission of 56-Gb/s PAM4 per λ via tunable laser and 10-Gb/s InP MZM. Photonics Technol. Lett. 27(24), 2531–2534 (2015)CrossRefGoogle Scholar
  7. 7.
    Mnrin, M., Poulin, M., Maillous, M., Trhpanier, F., Painchaud, Y.: Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating. Opt. Fiber Commun. 418, 3–5 (2004)Google Scholar
  8. 8.
    Lasobras, J., Villafranca, A.: 10 Gb/s NRZ-DPSK and RZ-DPSK analysis based on complex spectrum measurement. In: Optical Fiber Communication Conference (OFC 2009), pp. 2–4 (2009)Google Scholar
  9. 9.
    Winzer, P.J., Essiambre, R.-J.: Advanced optical modulation formats. In: Proceedings of the IEEE, vol. 94, no. 5 (2006)CrossRefGoogle Scholar
  10. 10.
    Haris, M., Yu, J., Chang, G.: 8 × 10 Gbit/s WDM repeaterless transmission over 240 km SMF using modified duobinary RZ signals. In: Conference on Lasers and Electro-Optics, pp. 2–3 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Khairi
    • 1
    • 2
  • H. Fong Kok
    • 1
  • Z. Lambak
    • 1
  • M. I. Abdan
    • 1
  • M. A. F. Musa
    • 1
  • M. H. Othman
    • 1
  • M. L. H. Jamaluddin
    • 1
  • S. A. Mohamad Rofie
    • 1
  • C. Tee Din
    • 1
  • K. Chia Ching
    • 1
  • A. Mohd. Ramli
    • 1
  • M. A. Mokhtar
    • 1
  • S. A. Syed Ahmad
    • 1
  • I. Ramli
    • 1
  • M. Mokhtar
    • 2
  • S. B. Ahmad Anas
    • 2
  • M. A. Mahdi
    • 2
  1. 1.TM Research & Development Sdn. Bhd.CyberjayaMalaysia
  2. 2.Wireless and Photonics Network Research Center, Department of Computer and Communication Systems Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations