Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 7–8, pp 474–484 | Cite as

The Ni–Zr Phase Diagram in the Range 25–60 at.% Ni

  • O. L. SemenovaEmail author
  • V. M. Petyukh
  • O. S. Fomichov

The constitution of the Ni–Zr phase diagram in the range 25–60 at.% Ni was refined using physicochemical analysis methods (metallography, X-ray diffraction, and differential thermal and electron microprobe analyses). The Zr2Ni and ZrNi phases were shown to melt at temperatures about 100 and 30°C lower than accepted previously. Upon analysis of the published data and our own experimental results, we concluded that the eutectic interaction between the Zr2Ni and ZrNi phases was not adequately confirmed. A modification of the equiatomic cubic phase was found for the first time.


nickel zirconium peritectic reaction congruent melting phase diagram 


  1. 1.
    G.G. Libowitz, H.F. Hayes, T.R.P. Gibb Jr., and G.G. Libowitz, “The system zirconium–nickel and hydrogen,” J. Phys. Chem., 62, No. 1, 76–79 (1958).CrossRefGoogle Scholar
  2. 2.
    B. Toloui, G. Gregan, and M.G. Scott, “The influence of quenched-in crystals on thermal stability of partially amorphous Zr76Ni24 alloy,” J. Mater. Sci., 19, No. 12, 4007–4013 (1984).CrossRefGoogle Scholar
  3. 3.
    L.A. Bendersky, K. Wang, W.J. Boettinger, D.E. Newbury, K. Young, and B. Chao, “Examination of multiphase (Zr, Ti) (V, Cr, Mn, Ni)2 Ni–MH electrode alloys: part II. Solid-state transformation of the interdendritic B2 phase,” Metall. Mater. Trans. A, 41A, 1891–1906 (2010).CrossRefGoogle Scholar
  4. 4.
    D.S. Easton, C.G. McKamey, D.M. Kroeger, and O.B. Cavin, “A new metastable phase near 60 at.% Zr from amorphous Ni–Zr,” J. Mater. Sci., 21, No. 4, 1275–1279 (1986).Google Scholar
  5. 5.
    J. Nei, K. Young, R. Regneic, D.G. Lawese, S.O. Salley, and K.Y.S. Ng, “Gaseous phase hydrogen storage and electrochemical properties of Zr8Ni21, Zr7Ni10, Zr9Ni11 and ZrNi metal hydride alloys,” Int. J. Hydrogen Energy, 37, No. 21, 16042–16055 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Shen, L.A. Bendersky, K. Young, and J. Nei, “Fine structure in multi-phase Zr8Ni21–Zr7Ni10–Zr2Ni7 alloy revealed by transmission electron microscope,” Materials, 8, 4618–4630 (2015).CrossRefGoogle Scholar
  7. 7.
    Q.W. Yang and T. Zhang, “Composition dependence of structural evolution of Ni–Zr alloys during cooling,” J. Phys.: Condens. Matter, 19, 086212-1–086212-10 (2007).Google Scholar
  8. 8.
    M.E. Kirpatrick and W.L. Larsen, “Phase relationships in the nickel–zirconium and nickel–hafnium alloy systems,” Trans. ASM, 54, 580–590 (1961).Google Scholar
  9. 9.
    P. Nash and C.S. Jayanth, “The Ni–Zr system,” Bull. Alloy Phase Diagram, 5, No. 2, 144–148 (1984).Google Scholar
  10. 10.
    H.T. Takeshita, S. Kondo, H. Miyamura, N. Takeichi, N. Kuriyama, and T. Oishi, “Reexamination of Zr7Ni10 single-phase region,” Alloys Compd., 376, 268–274 (2004).CrossRefGoogle Scholar
  11. 11.
    N. Wang, C. Li, Z. Du, and F. Wang, “Experimental study and thermodynamic reassessment of the Ni–Zr system,” Calphad, 31, 413–421 (2007).CrossRefGoogle Scholar
  12. 12.
    J.K. Stalick, L.A. Bendersky, and R.M. Waterstrat, “One-dimensional disorder in Zr9M11 (M = Ni, Pd, Pt) and low-temperature atomic mobility in Zr9Ni11,” J. Phys. Condens. Matter, 20, 285–294 (2008).Google Scholar
  13. 13.
    N. Wang, C. Li, Z. Du, J. Li, and F. Wang, “Experimental study of the phase equilibria of the Ni–Zr system,” Int. J. Mater. Res., 99, 712–715 (2008).CrossRefGoogle Scholar
  14. 14.
    T. Kosorukova, V. Ivanchenko, G. Firstov, and H. Noel, “Experimental reinvestigation of the Ni–Zr system,” Solid State Phenom., 194, 14–20 (2013).Google Scholar
  15. 15.
    H. Okamoto, “Ni–Zr (nickel–zirconium),” J. Phase Equilib. Diffus., 28, 409 (2007).CrossRefGoogle Scholar
  16. 16.
    N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, and O. Semenova, “Ni–Zr binary phase diagram evaluation,” in: Effenberg, G. (ed.), MSI Eureka, MSI, Materials Science International, Stuttgart (2015), Document ID: 20.11406.1.2 (Crystal Structure, Phase Diagram, Phase Relations, Assessment, 77).Google Scholar
  17. 17.
    V.N. Eremenko, E.L. Semenova, and T.D. Shtepa, “Study of transformations in near-equiatomic Zr–Rh alloys,” in: Thermal Analysis and Phase Equilibria, Perm (1983), pp. 109–113.Google Scholar
  18. 18.
    W.I. Boetinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, NIST Recommended Practice Guide, Special Publication, Washington, USA (2006).Google Scholar
  19. 19.
    V.G. Ivanchenko, T.O. Kosorukova, and V.V. Pogorila, “Study of phase equilibria in the Zr2Co–Zr2Ni system,” Metalloznav. Obrob. Met., No. 1, 19–22 (2004).Google Scholar
  20. 20.
    M.E. Kirpatrick, J.F. Smith, and W.L. Larsen, “The structures of NiZr2, NiZr and their hafnium analogs,” Acta Cryst., 15, 252–255 (1962).Google Scholar
  21. 21.
    J.L. Glimois, C. Becle, G. Develey, and J.M. Moreau, “Crystal structure of the intermetallic compound Ni11Zr9,” J. Less-Common Met., 64, No 1, 87–90 (1979).CrossRefGoogle Scholar
  22. 22.
    J.-M. Joubert, R. Cerny, K. Yron, M. Latroche, and A. Percheron Guegan, “Zirconium–nickel Zr7Ni10: space group revision for the stoichiometric phase,” Acta Cryst., 53, 1536–1538 (1997).CrossRefGoogle Scholar
  23. 23.
    O.L. Semenova, V.M. Petyukh, and O.S. Fomichev, “The quasibinary ZrCo–ZrNi phase diagram,” Powder Metall. Met Ceram., 56, No. 3–4, 210–219 (2017).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, C. Xie, and L. Wu, “Martensitic transformation and shape memory effect of Ti–49 at.% Ni alloys,” Mater. Sci. Eng. A., 438–440, 905–910 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. L. Semenova
    • 1
    Email author
  • V. M. Petyukh
    • 1
  • O. S. Fomichov
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations