The Ni–Zr Phase Diagram in the Range 25–60 at.% Ni
PHYSICOCHEMICAL MATERIALS RESEARCH
First Online:
- 2 Downloads
The constitution of the Ni–Zr phase diagram in the range 25–60 at.% Ni was refined using physicochemical analysis methods (metallography, X-ray diffraction, and differential thermal and electron microprobe analyses). The Zr2Ni and ZrNi phases were shown to melt at temperatures about 100 and 30°C lower than accepted previously. Upon analysis of the published data and our own experimental results, we concluded that the eutectic interaction between the Zr2Ni and ZrNi phases was not adequately confirmed. A modification of the equiatomic cubic phase was found for the first time.
Keywords
nickel zirconium peritectic reaction congruent melting phase diagramReferences
- 1.G.G. Libowitz, H.F. Hayes, T.R.P. Gibb Jr., and G.G. Libowitz, “The system zirconium–nickel and hydrogen,” J. Phys. Chem., 62, No. 1, 76–79 (1958).CrossRefGoogle Scholar
- 2.B. Toloui, G. Gregan, and M.G. Scott, “The influence of quenched-in crystals on thermal stability of partially amorphous Zr76Ni24 alloy,” J. Mater. Sci., 19, No. 12, 4007–4013 (1984).CrossRefGoogle Scholar
- 3.L.A. Bendersky, K. Wang, W.J. Boettinger, D.E. Newbury, K. Young, and B. Chao, “Examination of multiphase (Zr, Ti) (V, Cr, Mn, Ni)2 Ni–MH electrode alloys: part II. Solid-state transformation of the interdendritic B2 phase,” Metall. Mater. Trans. A, 41A, 1891–1906 (2010).CrossRefGoogle Scholar
- 4.D.S. Easton, C.G. McKamey, D.M. Kroeger, and O.B. Cavin, “A new metastable phase near 60 at.% Zr from amorphous Ni–Zr,” J. Mater. Sci., 21, No. 4, 1275–1279 (1986).Google Scholar
- 5.J. Nei, K. Young, R. Regneic, D.G. Lawese, S.O. Salley, and K.Y.S. Ng, “Gaseous phase hydrogen storage and electrochemical properties of Zr8Ni21, Zr7Ni10, Zr9Ni11 and ZrNi metal hydride alloys,” Int. J. Hydrogen Energy, 37, No. 21, 16042–16055 (2012).CrossRefGoogle Scholar
- 6.H. Shen, L.A. Bendersky, K. Young, and J. Nei, “Fine structure in multi-phase Zr8Ni21–Zr7Ni10–Zr2Ni7 alloy revealed by transmission electron microscope,” Materials, 8, 4618–4630 (2015).CrossRefGoogle Scholar
- 7.Q.W. Yang and T. Zhang, “Composition dependence of structural evolution of Ni–Zr alloys during cooling,” J. Phys.: Condens. Matter, 19, 086212-1–086212-10 (2007).Google Scholar
- 8.M.E. Kirpatrick and W.L. Larsen, “Phase relationships in the nickel–zirconium and nickel–hafnium alloy systems,” Trans. ASM, 54, 580–590 (1961).Google Scholar
- 9.P. Nash and C.S. Jayanth, “The Ni–Zr system,” Bull. Alloy Phase Diagram, 5, No. 2, 144–148 (1984).Google Scholar
- 10.H.T. Takeshita, S. Kondo, H. Miyamura, N. Takeichi, N. Kuriyama, and T. Oishi, “Reexamination of Zr7Ni10 single-phase region,” Alloys Compd., 376, 268–274 (2004).CrossRefGoogle Scholar
- 11.N. Wang, C. Li, Z. Du, and F. Wang, “Experimental study and thermodynamic reassessment of the Ni–Zr system,” Calphad, 31, 413–421 (2007).CrossRefGoogle Scholar
- 12.J.K. Stalick, L.A. Bendersky, and R.M. Waterstrat, “One-dimensional disorder in Zr9M11 (M = Ni, Pd, Pt) and low-temperature atomic mobility in Zr9Ni11,” J. Phys. Condens. Matter, 20, 285–294 (2008).Google Scholar
- 13.N. Wang, C. Li, Z. Du, J. Li, and F. Wang, “Experimental study of the phase equilibria of the Ni–Zr system,” Int. J. Mater. Res., 99, 712–715 (2008).CrossRefGoogle Scholar
- 14.T. Kosorukova, V. Ivanchenko, G. Firstov, and H. Noel, “Experimental reinvestigation of the Ni–Zr system,” Solid State Phenom., 194, 14–20 (2013).Google Scholar
- 15.H. Okamoto, “Ni–Zr (nickel–zirconium),” J. Phase Equilib. Diffus., 28, 409 (2007).CrossRefGoogle Scholar
- 16.N. Bochvar, O. Abdulov, T. Dobatkina, M. Kareva, and O. Semenova, “Ni–Zr binary phase diagram evaluation,” in: Effenberg, G. (ed.), MSI Eureka, MSI, Materials Science International, Stuttgart (2015), Document ID: 20.11406.1.2 (Crystal Structure, Phase Diagram, Phase Relations, Assessment, 77).Google Scholar
- 17.V.N. Eremenko, E.L. Semenova, and T.D. Shtepa, “Study of transformations in near-equiatomic Zr–Rh alloys,” in: Thermal Analysis and Phase Equilibria, Perm (1983), pp. 109–113.Google Scholar
- 18.W.I. Boetinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, NIST Recommended Practice Guide, Special Publication, Washington, USA (2006).Google Scholar
- 19.V.G. Ivanchenko, T.O. Kosorukova, and V.V. Pogorila, “Study of phase equilibria in the Zr2Co–Zr2Ni system,” Metalloznav. Obrob. Met., No. 1, 19–22 (2004).Google Scholar
- 20.M.E. Kirpatrick, J.F. Smith, and W.L. Larsen, “The structures of NiZr2, NiZr and their hafnium analogs,” Acta Cryst., 15, 252–255 (1962).Google Scholar
- 21.J.L. Glimois, C. Becle, G. Develey, and J.M. Moreau, “Crystal structure of the intermetallic compound Ni11Zr9,” J. Less-Common Met., 64, No 1, 87–90 (1979).CrossRefGoogle Scholar
- 22.J.-M. Joubert, R. Cerny, K. Yron, M. Latroche, and A. Percheron Guegan, “Zirconium–nickel Zr7Ni10: space group revision for the stoichiometric phase,” Acta Cryst., 53, 1536–1538 (1997).CrossRefGoogle Scholar
- 23.O.L. Semenova, V.M. Petyukh, and O.S. Fomichev, “The quasibinary ZrCo–ZrNi phase diagram,” Powder Metall. Met Ceram., 56, No. 3–4, 210–219 (2017).CrossRefGoogle Scholar
- 24.L. Zhang, C. Xie, and L. Wu, “Martensitic transformation and shape memory effect of Ti–49 at.% Ni alloys,” Mater. Sci. Eng. A., 438–440, 905–910 (2006).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019