Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 5–6, pp 351–355 | Cite as

Structural Study of Vanadium Substituted Mo2NiB2

  • Li XiaoboEmail author
  • Long Junbi
  • Zhong yunchong
  • Zhu Wenjia
STRUCTURAL MATERIALS RESEARCH
  • 4 Downloads

Vanadium substituted Mo2–xNi1–xV2xB2 (x = 0 and 0.45) was prepared by reaction boronizing sintering and investigated using X-ray powder diffraction. Structure of Vanadium substituted Mo2–xNi1–xV2xB2 was determined using the Rietveld method. The results show that the crystal structure of vanadium substituted Mo2NiB2 has changed from orthorhombic to tetragonal. The crystal structure of Mo2NiB2 belongs to the structure type W2CoB2 with space group Immm (No. 71). The unit-cell lattice parameters are a = 7.0914(2) Å, b = 4.5639(9) Å, c = 3.1787(8) Å. The reliability factor for the refinement is Rp = 6.74% and Rwp = 8.52%. The crystal structure of vanadium substituted Mo2NiB2 belongs to space group P4/mbm (No. 127). The lattice parameters are a = b = 5.8244(5) Å, c = 3.1239(6) Å. The reliability factor is Rp = 5.69% and Rwp = 7.41%.

Keywords

Mo2NiB2 Rietveld method X-ray diffraction vanadium 

References

  1. 1.
    Y. Yamasaki, M. Nishi, and K. Takagi, “Development of very high strenght Mo2NiB2 complex boride base hard alloy,” J. Solid State Chem., 177, No. 2, 551–555 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Takagi, “Development and application of high strength ternary boride base cermets,” J. Solid State Chem., 179, No. 9, 2809–2818 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Komai, Y. Yamasaki, and K. Takagi, “Effect of Cr content on properties of (Mo, Ni) boride base hard alloys,” J. Jpn Inst. Met., 57, No. 7, 813–820 (1993).CrossRefGoogle Scholar
  4. 4.
    Y. Yamasaki, H. Uchitomi, Y. Isobe, M. Komai, and K. Takagi, “Sintering mechanisms of Cr-containing Mo2NiB2 base hard alloys,” J. Jpn Soc. Powder Powder Metall., 41, No. 9, 1037–1041 (1994).CrossRefGoogle Scholar
  5. 5.
    Y. Yamasaki, K. Nakano, M. Okada, and K. Takagi, “Microstructures and mechanical properties of V-containing Mo2NiB2 hard alloys,” J. Jpn Soc. Powder Powder Metall., 42, No. 4, 438–442 (1995).CrossRefGoogle Scholar
  6. 6.
    Y. Yamasaki, K. Nakano, K. Takagi, and K. Koike, “Effect of W content on the properties and structure of Cr-containing Mo2NiB2 base hard alloys,” J. Jpn Soc. Powder Powder Metall., 43, No. 4, 498–503 (1996).CrossRefGoogle Scholar
  7. 7.
    K .Takagi, and Y. Yamasaki, “Effects of Mo/B atomic ratio on the mechanical properties and structure of Mo2NiB2 boride base cermets with Cr and V additions,” J. Solid State Chem., 154, No. 1, 263–268 (2000).Google Scholar
  8. 8.
    M. Yonetsu, Y. Yamasaki, and K. Takagi, “Microstructure and mechanical properties of Mn containing Mo2NiB2 boride base cermets,” J. Jpn Inst. Met., 65, No. 3, 147–150 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. Yamasaki, M. Nishi, and K. Takagi, “Effect of Mo content on microstructures and mechanical properties of Mn and V containing Mo2NiB2 base hard alloys,” J. Jpn Soc. Powder Powder Metall., 49, No. 4, 312–317 (2002).CrossRefGoogle Scholar
  10. 10.
    K. Takagi, “Effect of Mn on the mechanical properties and microstructure of reaction sintered Mo2NiB2 boride-based cermets,” Met. Mater. Int., 9, No. 5, 467–471 (2003).CrossRefGoogle Scholar
  11. 11.
    Y. Shiota, Y. Miyajima, T. Fujima, and K. Takagi, “Effect of double addition of V and Cr on the properties of Mo2NiB2 ternary boride-based cermets,” J. Phys. Conf. Ser., 176, No. 1, 012–046 (2009).Google Scholar
  12. 12.
    K. Takagi, W. Koike, A. Momozawa, and T. Fujima, “Effects of Cr on the properties of Mo2NiB2 ternary boride,” Solid State Sci., 14, Nos. 11–12, 1643–1647 (2012).Google Scholar
  13. 13.
    A.C. Larson, and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004), pp. 1–224.Google Scholar
  14. 14.
    B.H. Toby, “EXPGUI, a graphical user interface for GSAS”, J. Appl. Cryst., 34, 210-213 (2001).CrossRefGoogle Scholar
  15. 15.
    Yu.B. Kuz’ma, P.I. Kripyakevich, and R.V. Skolozdra, “Crystal structures of Mo2NiB2 and analogous compounds,” Reports of the NAS of Ukraine, No. 10, 1290–1293 (1966).Google Scholar
  16. 16.
    E.I. Gladyshevskii, T.F. Fedorov, Yu.B. Kuz’ma, and R.V. Skolozdra, “Isothermal section of the molbdenum-iron-boron system,” Powder Metall. Metal Ceram., 5, No. 4, 305–309 (1966).Google Scholar
  17. 17.
    M. Komai, Y. Yamasaki, S. Ozaki, and K. Takagi, “Mechanical properties of Mo2NiB2 base hard alloys and crystal structures of boride phases,” J. Jpn Inst. Met., 58, No. 8, 959–965 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Li Xiaobo
    • 1
    • 2
    Email author
  • Long Junbi
    • 1
    • 2
  • Zhong yunchong
    • 1
    • 2
  • Zhu Wenjia
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringXiangtan UniversityXiangtanP. R. China
  2. 2.Key Laboratory of Materials Design and Preparation Technology of Hunan ProvinceXiangtan UniversityXiangtanP. R. China

Personalised recommendations