Consolidation and Simulations of Hot Isostatic Pressing of Selective Laser Sintered Stainless Steel Parts

  • Yan Ying DuEmail author
  • Yun Chen
  • Chao Zhu

The method of hot isostatic pressing of selective laser sintered parts is proposed to make metal parts with complex structure and high density. The forming process is greatly simplified by removing the operation of cold isostatic pressing. Therefore, it is a new effective method for manufacturing complex metal parts. A bevel gear has been made by this method using AISI304 stainless steel. The simulation of hot isostatic pressing has been carried out using the Drucker–Prager–Cap model in ABAQUS/Standard and the hyperbolic-sine creep subroutine. The simulation results have been compared with those of the experiments. The final relative density of the parts by this method increases up to 0.90 from original 0.37. The results show that there is only big volumetric contraction without obvious distortions. The errors of the main dimensions are within 6%, which indicates good agreement between the experimental results and the calculated results.


laser sintering pressing simulations densification metal-forming 


  1. 1.
    B.J. Reardon, “Optimizing the hot isostatic pressing process,” Mater. Manuf. Processes, 18, No. 3, 493–508 (2007).CrossRefGoogle Scholar
  2. 2.
    P.P. Duan, P. Liu, X.D. Xu, W. Wang, Z. Wan, S.Y. Zhang, Y.Z. Wang, and J. Zhang, “Fabrication of transparent Tb3Al5O12 ceramics by hot isostatic pressing sintering,” J. Am. Ceram. Soc., 100, No. 7, 2893–2901 (2017).CrossRefGoogle Scholar
  3. 3.
    N.P. Lavery, J. Cherry, S. Mehmood, H. Davies, B. Girling, E. Sackett, S.G.R. Brown, and J. Sienz, “Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion,” Mater. Sci. Eng. A (2017), Scholar
  4. 4.
    K. Liu, H.J. Sun, Y.L. Tan, Y.S. Shi, J. Liu, S.W. Zhang, and S.Y. Huang, “Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing,” Int. J. Adv. Manuf. Technol., 90, No. 1, 945–952 (2017).CrossRefGoogle Scholar
  5. 5.
    Anru Yan, Zhiyong Wang, Tiantian Yang, Yanling Wang, and Zhihong Ma, “Sintering densification behaviors and microstructural evolvement of W–Cu–Ni composite fabricated by selective laser sintering,” Int. J. Adv. Manuf. Technol., 90, No. 1, 657–666 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Maszybrocka, A. Stwora, B. Gapinski, G. Skrabalak, and M. Karolus, “Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering,” Bull. Pol. Acad. Sci.: Tech. Sci., 65, No. 1 (2017), Scholar
  7. 7.
    Z.L. Lu, Y.S. Shi, J.H. Liu, Y. Chen, and S.H. Huang, “Characterization of samples from Fe based composite materials prepared by different powder metallurgy techniques,” Powder Metall., 51, No. 3, 257–262 (2008).CrossRefGoogle Scholar
  8. 8.
    Z.L. Lu, Y.S. Shi, J.H. Liu, Y. Chen, and S.H. Huang, “Manufacturing AISI304 metal parts by indirect selective laser sintering combined with isostatic pressing,” Int. J. Adv. Manuf. Technol., 39, No. 11, 1157–1163 (2008).CrossRefGoogle Scholar
  9. 9.
    Z.L. Lu, J.H. Liu, Y.S. Shi, Y. Chen, and S.H. Huang, “Investigation into the densification of AISI304 parts fabricated by hybrid powder metallurgy techniques,” Indian J. Eng. Mater. Sci., 17, No. 1, 49–55 (2010).Google Scholar
  10. 10.
    J.H. Liu, Y.S. Shi, Z.L. Lu, and S.H. Huang, “Manufacturing near dense metal parts via indirect selective laser sintering combined with isostatic pressing,” Appl. Phys. A, 89, No. 3, 743–748 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Agarwala, D.L. Bourell, J.J. Beaman, H.L. Marcus, and J.W. Barlow, “Post-processing of selective laser sintered metal parts,” Rapid Prototyping J., 1, No. 2, 36–44 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Ruttert, M. Ramsperger, L. M. Roncery, I. Loezgalilea, C. Korner, and W. Theisen, “Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting,” Mater. Des., 720–727 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Kreitcberg, B. Vladimir, S. Turenne, C. Chanal, and V. Urlea, “Influence of thermo- and hip treatments on the microstructure and mechanical properties of in 625 alloy parts produced by selective laser melting: a comparative study,” Mater. Sci. Forum, 879, 1008–1013 (2016).CrossRefGoogle Scholar
  14. 14.
    Y.S. Shi, L.H. Ren, Q.S. Wei, and J.H. Liu, “Simulation of cold isostatic pressing of part by selective laser sintering,” J. Huazhong Univ. Sci. Technol., 35, No. 12, 91–94 (2007).Google Scholar
  15. 15.
    Y.Y. Du, Y.S. Shi, and Q.S. Wei, “Finite element simulation of cold isostatic pressing of the selective laser-sintered components,” Mater. Manuf. Processes, 25, No. 12, 1389–1396 (2010).CrossRefGoogle Scholar
  16. 16.
    Y.Y. Du, Y.S. Shi, and Q.S. Wei, “Forming simulation and experimental verification of combined formation of selective laser sintering and cold isostatic pressing,” J. Mater. Eng. Perform., 20, No. 2, 185–190 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Deckers, K. Shahzad, L. Cardon, M. Rombouts, J. Vleugels, and J. Kruth, “Shaping ceramics through indirect selective laser sintering,” Rapid Prototyping J., 22, No. 3, 544–558 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Svoboda, M. Näsström, and H. Häggblad, “Simulation of hot isostatic pressing of metal powder components to near net shape,” Eng. Comput., 13, No. 5, 13–37 (1996).CrossRefGoogle Scholar
  19. 19.
    B. Hibbitt, ABAQUS Theory Manual, Elsevier Science Ltd, Netherland (1996), pp. 4–3.Google Scholar
  20. 20.
    S. Yang, J.N. Gwak, and T.S. Lim, “Preparation of spherical titanium powders from polygonal titanium hydride powders by radio frequency plasma treatment,” Mater. Trans., 54, No. 12, 2313–2316 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Abouaf, J.L. Chenot, G. Raisson, and P. Bauduin, “Finite element simulation of hot isostatic pressing of metal powders,” Int. J. Numer. Methods Eng., 25, No. 1, 191–212 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Design and AutomationWu Han University of TechnologyWuhanP. R. China

Personalised recommendations