Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 3–4, pp 230–236 | Cite as

Thermodynamic Properties of Hexagonal Molybdenum Disulfide Calculated from First Principles

  • O. O. VasilievEmail author
Article
  • 7 Downloads

Standard values of the heat capacity, entropy, enthalpy, and enthalpy of formation of hexagonal molybdenum disulfide 2H-MoS2 have been calculated from first principles using the Density Functional Theory (DFT). Values of the first three properties demonstrate good agreement with experimental data from the literature: deviations do not exceed 2% at 298.15 K. Standard value of the enthalpy of formation is 5 to 8% lower than the experimental one, depending on the calculation parameters, which is probably due to specifics of the approximation chosen for the exchange-correlation functional (local density approximation (LDA)). Analysis of the deviations shows that they are predominantly determined by the quality of electronic total energy calculations, and the results can be further improved by application of exchange-correlation functionals capable of dealing with weak Van der Waals forces.

Keywords

heat capacity entropy enthalpy enthalpy of formation hexagonal molybdenum disulfide density functional theory 

Notes

Acknowledgments

The study has been partially supported from the NATO SPS Program, Project G905070.

References

  1. 1.
    R.F. Sebenik, A.R. Burkin, R.R. Dorfler, J.M. Laferty, and G. Leichtfried, “Molybdenum and molybdenum compounds,” in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, Germany (2000), Vol. 23, pp. 522–566.Google Scholar
  2. 2.
    P. Joensen, R.F. Frindt, and S.R. Morrison, “Single-layer MoS2,” Mater. Res. Bull., 21, No. 4, 457–461 (1986).CrossRefGoogle Scholar
  3. 3.
    H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets,” Acc. Chem. Res., 47, No. 4, 1067–1075 (2014).CrossRefGoogle Scholar
  4. 4.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, and M. Chen, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., 11, No. 12, 5111–5116 (2011).CrossRefGoogle Scholar
  5. 5.
    T.A. Dontsova, L.M. Kulikov, and I.M. Astrelin, “Adsorption-photocatalytic properties of micronic and graphene (2D) nanoparticles of molybdenum dichalcogenides,” J. Water Chem. Technol., 39, No. 3, 132–137 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Xiao, D. Choi, L. Cosimbescu, P. Koech, and J. Liu, “Exfoliated MoS2 Nanocomposite as an anode material for lithium ion batteries,” Chem. Mater., 22, No. 16, 4522–4524 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Strapasson, P.C. Badin, G.V. Soares, G. Machado, and C.A. Figueroa, “Structure, composition, and mechanical characterization of DC sputtered TiN–MoS2 nanocomposite thin films,” Surf. Coat. Technol., 205, No. 13–14, 3810–3815 (2011).CrossRefGoogle Scholar
  8. 8.
    B. Cho, J. Yoon, S.K. Lim, A.R. Kim, and D. Kim, “Chemical sensing of 2D graphene/MoS2 heterostructure device,” ACS Appl. Mater. Interfaces, 7, No. 30, 16775–16780 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Rathi, I. Lee, D. Lim, J. Wang, and Y. Ochiai, “Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices,” Nano Lett., 15, No. 8, 5017–5024 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, and H.L. Zhang, “Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives,” Nanoscale Horiz., 3, No. 2, 90–204 (2018).CrossRefGoogle Scholar
  11. 11.
    V.B. Muratov, O.O. Vasiliev, L.M. Kulikov, V.V. Garbuz., Yu.V. Nesterenko, and T.I. Duda, “Thermodynamic properties of multiwalled carbon nanotubes,” J. Superhard Mater., 34, No. 3, 173–178 (2012).CrossRefGoogle Scholar
  12. 12.
    O.O. Vasiliev, V.M. Muratov, L.M. Kulikov, V.V. Garbuz, and T.I. Duda, “Special features of the heat capacity of detonation nanocrystalline diamond,” J. Superhard Mater., 37, No. 6, 388–393 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B, 84, No. 15, 155413 (2011).CrossRefGoogle Scholar
  14. 14.
    S.S. Coutinho, M.S. Tavares, C.A. Barboza, N.F. Frazão, E. Moreira, and D.L. Azevedo, “3R and 2H polytypes of MoS2: DFT and DFPT calculations of structural, optoelectronic, vibrational and thermodynamic properties,” J. Phys. Chem. Solids, 111, 25–33 (2017).CrossRefGoogle Scholar
  15. 15.
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 136, No. 3B, B864–B871 (1964).CrossRefGoogle Scholar
  16. 16.
    N.E. Zein, “Ab initio calculations of phonon dispersion curves. Application to Nb and Mo,” Phys. Lett. A, 161, No. 6, 526–530 (1992).CrossRefGoogle Scholar
  17. 17.
    S. Baroni, P. Giannozzi, and A. Testa, “Green’s-function approach to linear response in solids,” Phys. Rev. Lett., 58, No. 18, 1861–1864 (1987).CrossRefGoogle Scholar
  18. 18.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, and M. Buongiorno Nardelli, “Advanced capabilities for materials modelling with Quantum ESPRESSO,” J. Phys. Condens. Matter, 29, No. 46, 465901 (2017).CrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, No. 12, 5188 (1976).CrossRefGoogle Scholar
  20. 20.
    V.P. Glushko (ed.), Thermodynamic Properties of Individual Substances [in Russian], Nauka, Moscow (1982), Vol. IV, Book 2, p. 559.Google Scholar
  21. 21.
    V.P. Glushko (ed.), Thermodynamic Properties of Individual Substances [in Russian], Nauka, Moscow (1982), Vol. I, Book 2, p. 327.Google Scholar
  22. 22.
    R.W.G. Wyckoff, Crystal Structures, Interscience Publishers, New York (1963), Vol. 1, p. 467.Google Scholar
  23. 23.
    N. Wakabayashi, H.G. Smith, and R.M. Nicklow, “Lattice dynamics of hexagonal MoS2 studied by neutron scattering,” Phys. Rev. B, 12, No. 2, 659–663 (1975).CrossRefGoogle Scholar
  24. 24.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, and M.I.J. Probert, “First principles methods using CASTEP,” Z. Kristallogr., 220, No. 5–6, 567–570 (2005).Google Scholar
  25. 25.
    X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, and F. Bottin, “ABINIT: First-principles approach to material and nanosystem properties,” Comput. Phys. Commun., 180, No. 12, 2582–2615 (2009).CrossRefGoogle Scholar
  26. 26.
    J.J. McBride and E.F. Westrum, “Low-temperature heat capacity of anisotropic crystals lamellar molybdenum disulfide,” J. Chem. Thermodyn., 8, No. 1, 37–44 (1976).CrossRefGoogle Scholar
  27. 27.
    A. Burcat and B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion (With Update from Active Thermochemical Tables), Argonne National Laboratory (ANL), Argonne, USA (2005), p. 414.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations