Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 3–4, pp 210–221 | Cite as

Phase Equilibria and Phase Transformations at High Temperatures in Ternary Alloys of the Ni–Ti–Zr System at 50–100 Ni at.%

  • A. M. StorchakEmail author
  • T. Ya. Velikanova
  • L. V. Artyukh
  • A. V. Grytsiv
  • M. A. Turchanin
  • P. G. Agraval
  • V. M. Petyukh

Alloys of the ternary Ni–Ti–Zr system containing 50 to 100 at.% Ni that were annealed at subsolidus temperatures were examined by scanning electron microscopy, electron microprobe analysis, and differential thermal analysis. The solidus surface was constructed in this composition range. A new ternary phase of composition Ni69.2Ti12.5Zr18.3 was found.


Ni Ti Zr system, microstructure, solidus surface 



The authors are grateful to V.B. Sobolev (Technical Center of the National Academy of Sciences of Ukraine) for technical support in the experiments.


  1. 1.
    T. Sawaguchi, M. Sato, and A. Ishida, “Grain-size effect on shape-memory behavior of Ti35.0Ni49.7Zr15.4 thin films,” Metall. Mater. Trans. A, 35A, 111–119 (2004).Google Scholar
  2. 2.
    M. Zarinejad, Y. Liu, and Y. Tong, “Transformation temperature changes due to second phase precipitation in NiTi-based shape memory,” Intermetallics, 17, 914–919 (2009).CrossRefGoogle Scholar
  3. 3.
    P. Sadoc, J.Y. Kim, and K.F. Kelton, “Local atomic structure of icosahedral quasicrystals and 1/1 approximant in the Ti–Ni–Zr alloy system,” Mater. Sci. Eng., 294–296, 348–350 (2000).CrossRefGoogle Scholar
  4. 4.
    L. Wang and C. Li, “Formation of Zr70Ni23Ti7 glassy alloy and phase transformation upon annealing,” J. Mater. Res., 17, 693–696 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Louzguine-Luzgin, T. Shimada, and A. Inoue, “A study of glass-formation, formation of the supercooled liquid and devitrification behavior of Ni-based bulk glass-forming alloys,” Mater. Sci. Eng. A, 449–451, 198–202 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Bhatt and B.S. Murty, “On the conditions for the synthesis of bulk metallic glasses by mechanical alloying,” J. Alloys Compd., 459, 135–141 (2008).CrossRefGoogle Scholar
  7. 7.
    V.N. Eremenko, E.L. Semenova, and L.A. Tretyachenko, “Constitution of Ti–Zr–Ni alloys at 0–50% Ni at 700°C,” Dokl. Akad. Nauk USSR. Ser. A, 2, 79–143 (1988).Google Scholar
  8. 8.
    V.N. Eremenko, E.L. Semenova, L.A. Tretyachenko, and Z.G. Domatyrko, “Constitution of Ti–Zr–Ni alloys in the TiNi–ZrNi section,” Metallovedenie, 6, 85–88 (1989).Google Scholar
  9. 9.
    V.V. Molokanov, V.N. Chebotnikov, Yu.K. Kovneristy, and E.B. Rubina, “Structure and properties of Тi–Zr–Ni alloys in the Ti2Ni–Zr2Ni section in amorphous and crystalline states,” Izv. Akad. Nauk USSR. Neorg. Mater., 25, No. 1, 61–65 (1989).Google Scholar
  10. 10.
    V.N. Eremenko, E.L. Semenova, and L.A. Tretyachenko, “Solidus surface of the Тi–Zr–Ni system in the Ti–TiNi–ZrNi–Zr region,” Metally, 6, 191–196 (1990).Google Scholar
  11. 11.
    V.N. Eremenko, E.L. Semenova, and L.A. Tretyachenko, “Liquidus surface and solidification scheme for alloys of the system Ti–Zr–Ni containing up to 50% Ni,” Powder Metall. Met. Ceram., 30, No. 8, 664–668 (1991).CrossRefGoogle Scholar
  12. 12.
    V.N. Eremenko, E.L. Semenova, and L.A. Tretyachenko, “Solidus surface and reactions in crystallization of Ti–Zr–Ni alloys in the Ti–TiNi–ZrNi–Zr region,” Metally, 6, 138–143 (1992).Google Scholar
  13. 13.
    T. Tokunaga, S. Matsumoto, H. Ohtani, and M. Hasebe, “Thermodynamic calculation of phase equilibria in the Nb–Ni–Ti–Zr quaternary system,” Mater. Trans., 48, No. 2, 89–96 (2007).CrossRefGoogle Scholar
  14. 14.
    M.-C. Yeh, J.L. Li, P.J. Lo, and K.-C. Hsieh, “Phase equilibrium in the Ni–Ti–Zr system at 800°C,” J. Phase Equilib., 35, No. 2, 157–162 (2014).CrossRefGoogle Scholar
  15. 15.
    X.J. Liu, S.Y. Yang, Y.X. Huang, J.B. Zhang, J. Li, J. H. Zhu, H.X. Jiang, and P.C. Wang, “Experimental investigation of isothermal sections (1000, 1200°C) in the Ni–Ti–Zr system,” J. Phase Equilib., 36, No. 5, 414–421 (2015).CrossRefGoogle Scholar
  16. 16.
    T.Ya. Velikanova, A.A. Bondar, L.V. Artyukh, M.A. Turchanin, O.I. Dovbenko, V.M. Petyukh, A.M. Storchak-Fedyuk, O.S. Fomichov, Yu.M. Podrezov, M.V. Remez, S.O. Bilous, N.I. Tsyganenko, and V.M. Voblikov, “Experimental study of the Fe–Ta, Al–Fe–Ta, Al–Ta–Ti, and Ni–Ti–Zr systems for thermodynamic description,” in: Report on Studying the Stability of Phases and Phase Transformations in Multicomponent Systems Formed by Titanium, Chromium, and d-Metals in Group VIII with Aluminum, Tin, and Rare Earth and Other Elements as Scientific Fundamentals for Developing New Light High-Temperature Creep-Resistant Alloys and Functional Materials with Special Properties [in Ukrainian], Inst. Probl. Materialoznav. NAN Ukrainy, Kyiv (2012), Vol. 5, State Registration No. 0110U002347, p. 214.Google Scholar
  17. 17.
    J.L. Murray, “Ni–Ti (nickel–titanium),” in: P. Nash (ed.), Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, Ohio (1991), pp. 342–355.Google Scholar
  18. 18.
    P. Bellen, H. Kumar, and P. Wollants, “Thermodynamic assessment of the Ni–Ti phase diagram,” Z. Metallkd., 87, No. 12, 972–978 (1996).Google Scholar
  19. 19.
    T.V. Massalski, P.R. Subramanian, H. Okomoto, and L. Kasprzak (eds.), Binary Alloy Phase Diagrams: Handbook, in 3 Vols., 2nd ed., ASM International, Materials Park, Ohio (1990), p. 3589.Google Scholar
  20. 20.
    J.H. Glimois, P. Forey, R. Guillen, and J.L. Feron, “Structural study of the ternary alloys (TixZr1–x)Ni3,” J. Less-Common Met., 134, 221–228 (1987).CrossRefGoogle Scholar
  21. 21.
    P. Nash, Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, Ohio (1991).Google Scholar
  22. 22.
    Yu.A. Kocherzhynski, E.A. Shishkin, and V.I. Vasilenko, “DTA unit with a thermocouple sensor to 2200°C,” in: N.V. Ageev and O.S. Ivanova, Phase Diagrams of Metallic Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Storchak
    • 1
    Email author
  • T. Ya. Velikanova
    • 1
  • L. V. Artyukh
    • 1
  • A. V. Grytsiv
    • 2
  • M. A. Turchanin
    • 3
  • P. G. Agraval
    • 3
  • V. M. Petyukh
    • 1
  1. 1.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine
  2. 2.University of Vienna, Institute for Physical ChemistryViennaAustria
  3. 3.Donbass State Mechanical Engineering AcademyKramatorskUkraine

Personalised recommendations