Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 3–4, pp 197–203 | Cite as

Formation of Phases in the FePt/Au/FePt Films and their Magnetic Properties

  • P. V. MakushkoEmail author
  • M. Yu. Verbytska
  • M. N. Shamis
  • A. P. Burmak
  • Ya. A. Berezniak
  • K. A. Graivoronska
  • T. I. Verbytska
  • Yu. N. Makogon

The effect of annealing atmosphere (vacuum, hydrogen) and intermediate Au layer thickness on the formation of a magnetically hard L10 phase and the magnetic properties of Fe50Pt50(15 nm)/Au(7.5, 30 nm)/Fe50Pt50(15 nm) films deposited by magnetron sputtering onto SiO2(100 nm)/Si(001) substrates was studied. Samples were heat-treated in a hydrogen atmosphere at 100 kPa. The disordered A1-FePt phase formed in the as-deposited films. The ordered L10-FePt phase appeared in the film with an intermediate Au (7.5 nm) layer during vacuum annealing at 650°C. Increase in the intermediate Au layer thickness to 30 nm reduces the ordering temperature to 600°C. This is promoted by higher compressive stresses in the as-deposited Fe50Pt50 layers with a thicker Au interlayer. In hydrogen annealing, the A1 → L10-FePt phase transition in the Fe50Pt50(15 nm)/Au(7.5, 30 nm)/Fe50Pt50(15 nm) films starts at 500°C regardless of the intermediate Au layer thickness. The Au and FePt axial (111) textures are observed in the films annealed in hydrogen. This is more evident in the films with a thicker Au (30 nm) interlayer. The film with an intermediate Au (30 nm) layer shows 27.3 kOe coercivity after vacuum annealing at 900°C. The same coercivity can be achieved by hydrogen annealing at 700°C, which is 200°C lower than after vacuum annealing due to the introduction of hydrogen into voids of the L10-FePt lattice and increase of stresses.


film ordered L10-FePt phase hydrogen annealing coercivity 



The authors would like to thank Professor M. Albrecht and staff of the University of Augsburg (Germany) for preparing the samples, assisting in the research, and discussing the findings. This research effort was funded under the DAAD Leonard Euler Scholar Program (Grant DAAD No. 57198300 and Grant DAAD No. 57291435).


  1. 1.
    D. Weller, A. Moser, L. Folks, M.E. Best, W. Lee, M.F. Toney, M. Schickert, J.-U. Thiele, and M.F. Doemer, “High Ku materials approach to 100 Gbits = in2,” IEEE Trans. Magn., 36, 10–15 (2000).CrossRefGoogle Scholar
  2. 2.
    A.T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, and O. Hellwig, “L10 FePt based exchange coupled composite bit patterned films,” Appl. Phys. Lett., 98, 242503 (2011), DOI: Scholar
  3. 3.
    D. Weller, O. Mosendz, G. Parker, S. Pisana, and T.S. Santos, “L10 FePtX–Y media for heat-assisted magnetic recording,” Phys. Status Solidi A, 210, 1245 (2013), DOI: Scholar
  4. 4.
    D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N.Y. Safonova, and M. Albrecht, “Review article: FePt heat assisted magnetic recording media,” J. Vac. Sci. Technol., B34, 060801 (2016), DOI: Scholar
  5. 5.
    I.A. Vladymyrskyi, O.P. Pavlova, T.I. Verbitska, S.I. Sidorenko, G.L. Katona, D.L. Beke, and Iu.M. Makogon, “Influence of intermediate Ag layer on the structure and magnetic properties of Pt/Ag/Fe thin films,” Vacuum, 101, 33 (2014), DOI: Scholar
  6. 6.
    O.P. Pavlova, T.I. Verbitska, I.A. Vladymyrskyi, S.I. Sidorenko, G.L. Katona, D.L. Beke, G. Beddies, M. Albrecht, and I.M. Makogon, “Structural and magnetic properties of annealed FePt/Ag/FePt thin films,” Appl. Surf. Sci., 266, 100 (2013), DOI: j.apsusc.2012.11.102.Google Scholar
  7. 7.
    T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J. Akiyama, “Reduction of ordering temperature of a FePtordered alloy by addition of Cu,” Appl. Phys. Lett., 80, No. 12, 2147–2149 (2002), DOI: Scholar
  8. 8.
    C. Feng, Q. Zhan, B. Li, J. Teng, M. Li, Y. Jiang, and G. Yu, “Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy,” Appl. Phys. Lett., 93, 152513 (2008), DOI: Scholar
  9. 9.
    C. Feng, B.-H. Li, Y. Liu, J. Teng, M.-H. Li, Y. Jiang, and G.-H. Ya, “Improvement of magnetic property of L10-FePt film by FePt/Au multilayer structure,” J. Appl. Phys., 103, 023916 (2008), DOI: Scholar
  10. 10.
    Y.S. Yu, H.-B. Li, W.L. Li, M. Liu, and W.D. Fei, “Structure and magnetic properties of magnetron sputtered [(Fe/Pt/Fe)/Au] n multilayer films,” J. Magn. Magn. Mater., 322, 1770 (2010), DOI: Scholar
  11. 11.
    W.Y. Zhang, H. Shima, F. Takano, H. Akinaga, X.Z. Yu, T. Hara, W.Z. Zhang, K. Kimoto, Y. Matsui, and S. Nimori, “Enhancement in ordering of Fe50Pt50 film caused by Cr and Cu additives,” J. Appl. Phys., 106, 033907 (2009), DOI: Scholar
  12. 12.
    C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, A.G. Roy, and D.E. Laughlin, “L10 ordering and microstructure of FePt thin films with Cu, Ag and Au additive,” J. Appl. Phys., 92, No. 10, 6104–6108 (2002), DOI: Scholar
  13. 13.
    Y.F. Ding, J.S. Chen, and E. Liu, “Epitaxial L10 FePt films on SrTiO3(100) by sputtering,” J. Cryst. Growth, 276, 111 (2005), DOI: Scholar
  14. 14.
    M. Albrecht and C. Brombacher, “Rapid thermal annealing of FePt thin films,” Phys. Status Solidi A, 210, 1272 (2013), DOI: Scholar
  15. 15.
    C.L. Zha, S.H. He, B. Ma, Z.Z. Zhang, F.X. Gan, and Q.Y. Jin, “Dependence of ordering kinetics of FePt thin films on different substrates,” IEEE Trans. Magn., 44, No. 11, 3539–3542 (2008), DOI: Scholar
  16. 16.
    K.W. Wierman, C.L. Platt, J.K. Howard, and F.E. Spada, “Evolution of stress with L10 ordering in FePt and FeCuPt thin films,” J. Appl. Phys., 93, No. 10, 7160–7162 (2003), DOI: Scholar
  17. 17.
    S.N. Hsiao, S.K. Chen, T.S. Chin, Y.W. Hsu, H.W. Huang, F.T. Yuan, H.Y. Lee, and W.M. Liao, “Earlystage ordering in in-situ annealed Fe51Pt49 films,” J. Magn. Magn. Mater., 321, 2459–2466 (2009), DOI: Scholar
  18. 18.
    S.N. Hsiao, F.T. Yuan, H.W. Chang, H.W. Huang, S.K. Chen, and H.Y. Lee, “Effect of initial stress/strain state on order-disorder transformation of FePt thin films,” Appl. Phys. Lett., 94, 232505 (2009), DOI: Scholar
  19. 19.
    F.T. Yuan, S.H. Liu, W.M. Liao, S.N. Hsiao, S.K. Chen, and H.Y. Lee, “Ordering transformation of FePt thin films by initial stress/strain control,” IEEE Trans. Magn., 48, No. 3, 1139–1142 (2012), DOI: CrossRefGoogle Scholar
  20. 20.
    S.N. Hsiao, S.H. Liu, S.K. Chen, F.T. Yuan, and H.Y. Lee, “Effect of intrinsic tensile stress on (001) orientation in L10 FePt thin films on glass substrates,” J. Appl. Phys., 111, 07A702 (2012), DOI: Scholar
  21. 21.
    C.H. Lai, C.H. Yang, C.C. Chiang, T. Balaji, and T.K. Tseng, “Dynamic stress-induced low-temperature ordering of FePt,” Appl. Phys. Lett., 85, 4430 (2004), DOI: Scholar
  22. 22.
    S.N. Hsiao, S.K. Chen, S.H. Liu, C.J. Liao, F.T. Yuan, and H.Y. Lee, “Effect of annealing process on residual strain/stress behaviors in FePt thin films,” IEEE Trans. Magn., 47, No. 10, 3637–3640 (2011), DOI: Scholar
  23. 23.
    S.N. Hsiao, S.H. Liu, S.K. Chen, T.S. Chin, and H.Y. Lee, “Direct evidence for stress-induced (001) anisotropy of rapid-annealed FePt thin films,” Appl. Phys. Lett., 100, 261909 (2012), DOI: Scholar
  24. 24.
    J.-S. Kim, Y.-M. Koo, and N. Shin, “The effect of residual strain on (001) texture evolution in FePt thin films,” J. Appl. Phys., 100, 093909 (2006), DOI: Scholar
  25. 25.
    J.-S. Kim, Y.-M. Koo, B.-J. Lee, and S.-R. Lee, “The origin of (001) texture evolution in FePt thin films on amorphous substrates,” J. Appl. Phys., 99, 053906 (2006), DOI: Scholar
  26. 26.
    W. Hsu, S.K. Chen, W.M. Liao, F.T. Yuan, W.C. Chang, and J.L. Tsai, “Effect of Pt underlayer on the coercivity of FePt sputtered film,” J. Alloys Compd., 449, 52–55 (2008), DOI: Scholar
  27. 27.
    T. Kamiki and S. Nagawa, “Fabrication of FePt ordered alloy films by annealing in hydrogen atmosphere,” J. Magn. Soc. Jpn., 28, No. 3, 330–334 (2004).CrossRefGoogle Scholar
  28. 28.
    T. Kitagawa, J. Ikemoto, T. Kamiki, and S. Nakagawa, “Effect of hydrogen to attain (001) oriented FePt ordered alloy films from Pt/Fe bilayers,” in: IEEE Int. Magn. Conference 2006, INTERMAG, San Diego, California (2006), pp. 476–476.Google Scholar
  29. 29.
    M. Yamauchi, K. Okubo, T. Tsukuda, K. Kato, M. Takata, and S. Takeda, “Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques,” Nanoscale, 6, No. 8, 4067–4071 (2014).CrossRefGoogle Scholar
  30. 30.
    I.A. Vladymyrskyi, M.V. Karpets, F. Ganss, G.L. Katona, D.L. Beke, S.I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and Iu.M. Makogon, “Influence of the annealingatmosphere on the structural properties of FePt thin films,” J. Appl. Phys., 114, 164314 (2013), DOI: Scholar
  31. 31.
    M.Yu. Verbitska, M.N. Shamis, P.V. Makushko, Ya.O. Bereznyak, K.O. Graivoronska, T. I. Verbitska, and Iu.M. Makogon, “Formation of ordered L10-FePt phase in Fe50Pt50/Au/Fe50Pt50 films in hydrogen annealing,” Metallofiz. Noveish. Tekhnol., 40, No. 8, 1069–1079 (2018).CrossRefGoogle Scholar
  32. 32.
    V.E. Antonov, T.E. Antonova, I.T. Belash, A.E. Gorodetskii, and E.G. Ponyatovskii, “Production of gold hydrides at high hydrogen pressure,” Dokl. Akald. Nauk SSSR, 266, No. 2, 376–380 (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. V. Makushko
    • 1
    Email author
  • M. Yu. Verbytska
    • 1
  • M. N. Shamis
    • 1
  • A. P. Burmak
    • 1
  • Ya. A. Berezniak
    • 2
  • K. A. Graivoronska
    • 2
  • T. I. Verbytska
    • 1
  • Yu. N. Makogon
    • 1
  1. 1.National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic institute’KyivUkraine
  2. 2.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations