Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 3–4, pp 149–154 | Cite as

Thermal Oxidation Kinetics of Multi-Walled Carbon Nanotubes in an Oxygen Flow

  • V. V. GarbuzEmail author
  • L. N. Kuzmenko
  • V. A. Petrova
  • T. A. Silinska
  • T. M. Terentieva

The oxidation reactions of multi-walled carbon nanotubes in isothermal conditions have been studied for the first time. With a steady increase in temperature from 923 to 1173 K, the time dependence for the oxidation of multi-walled carbon nanotubes changes from a straight line to an S-shaped curve that reaches its saturation point. The sample’s oxidation rate on linearly increasing sections at 923 K is Vox = 4.38 · 10–7 mole/sec. Internal overheating of the sample activates rapid carbon oxidation reactions on the \( {360}^{{\mathrm{t}}_{\mathrm{h}}} \) sec at 973 K. In the range 1023–1173 K, the total rates increase exponentially: Vox = 1.19 · 10–6–1.97 · 10–5 mole/sec. The Arrhenius equation was used to calculate the kinetic parameters of carbon thermal oxidation. The activation energies for the oxidation reactions of multi-walled carbon nanotubes in the range 973–1173 K were found at Ea ≈ ≈ 169 ± 9 kJ/mol. The frequency characteristics of factor A0 were defined as ≈ (1.0–3.1) · 106 sec–1. The activation parameters of the oxidation reactions of multi-walled carbon nanotubes are close to the theoretical activation energy of graphite oxidation (172 kJ/mole).


multi-walled carbon nanotubes powder oxidation reaction kinetic parameters 


  1. 1.
    M. Terrones, “Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications,” Int. Mater. Rev., 49, No. 6, 325–377 (2004).CrossRefGoogle Scholar
  2. 2.
    P.J.F. Harris, “Carbon nanotube composites,” Int. Mater. Rev., 49, No. 1, 31–43 (2004).CrossRefGoogle Scholar
  3. 3.
    J.-Mi. Moon, K.H. An, Y.H. Lee, Y.S. Park, and D.J. Bae, “High-yield purification process of single walled carbon nanotubes,” J. Phys. Chem. B, 105, 5677–5681 (2001).CrossRefGoogle Scholar
  4. 4.
    Y.S. Park, Y.C. Choi, K.S. Kim, D.-C. Chung, D.J. Bae, K.H. An, S.C. Lim, X.Y. Zhu, and Y.H. Lee, “High yield purification of multiwall carbon nanotubes by selective oxidation during thermal annealing,” Carbon, 39, No. 5, 655–661 (2001).CrossRefGoogle Scholar
  5. 5.
    V.V. Garbuz and V.V. Zakharov, “Formation and oxidation of nanostructured carbon materials,” Nanostruct. Materialoved., No. 1, 74–83 (2007).Google Scholar
  6. 6.
    V.V. Garbuz, M.D. Bega, V.A. Petrova, L.S. Suvorova, L.M. Kuzmenko, and S.K. Shatskikh, “Studying the oxidation of commercial boron carbide powders by chemical analysis methods,” Powder Metall. Met. Ceram., 53, Nos. 7–8, 490–496 (2014).CrossRefGoogle Scholar
  7. 7.
    V.V. Garbuz, L.M. Kuzmenko, L.S. Suvorova, V.A. Petrova, T.A. Silinska, and S.K. Shatskikh, “Selective oxidation for quantitative determination of free carbon nanoforms in boron carbide powders,” Powder Metall. Met. Ceram., 55, Nos. 1–2, 37–42 (2016).CrossRefGoogle Scholar
  8. 8.
    V.V. Garbuz, L.M. Kuzmenko, L.S. Suvorova, and V.A. Petrova, “Qualification of the method for determining the content of multiwall carbon nanotubes,” Powder Metall. Met. Ceram., 55, Nos. 9–10, 150–159 (2017).Google Scholar
  9. 9.
    H. Lux, Experimental Methods in Inorganic Chemistry [in German], Barth, Leipzig (1959).Google Scholar
  10. 10.
    L.U. Deyi, X.U. Ke, X.U. Zhude, G.D. Zhonghya, and L.I. Xiaonian, “Kinetic analysis of oxidation of carbon nanotubes, C60 and graphite using mechanism-function method,” Chin. J. Chem. Eng., 13, No. 3, 355–360 (2005).Google Scholar
  11. 11.
    X. Lu, K.D. Ausman, R.D. Piner, and R.S. Ruoff, “Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air,” J. Appl. Phys., 86, No. 1, 186–189 (1999).CrossRefGoogle Scholar
  12. 12.
    Yu-Chen Hsieh, Yu-Chuan Chou, Chun-Ping Lin, Tung-Feng Hsieh, and Chi-Min Shu, “Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation,” Aerosol Air Qual. Res., 10, 212–218 (2010).CrossRefGoogle Scholar
  13. 13.
    N.V. Glebova, A.A. Nechitailov, Yu.A. Kukushkina, and V.V. Sokolov, “Studying the thermal oxidation of carbon nanomaterials,” Pis’ma Tekh. Zh., 37, No. 9, 97–104 (2011).Google Scholar
  14. 14.
    E.I. Gusachenko, M.V. Kislov, L.N. Stesik, and A.V. Krestinin, “Kinetics of oxidation of single-walled carbon nanotubes with water vapor,” J. Phys. Chem. B, 9, 321–326 (2015); DOI: Google Scholar
  15. 15.
    R. Brukh and S. Mitra, “Kinetics of carbon nanotube oxidation,” J. Mater. Chem., 17, 619–623 (2007); DOI: CrossRefGoogle Scholar
  16. 16.
    V.V. Gerasimov, V.V. Gerasimova, and A.G. Samoilov, “Quantitative assessment of graphite oxidation rate,” Dokl. Akad. Nauk SSSR. Nauka, 321, No. 1, 150–152 (1991).Google Scholar
  17. 17.
    H. Remy, Course of Inorganic Chemistry [in German], Vol. 1, Geest & Portig, Leipzig (1970).Google Scholar
  18. 18.
    A.N. Redkin and L.V. Malyarevich, “Production of carbon nanofibers and nanotubes by superfast heating of ethanol vapors,” Neorg. Mater., 39, No. 4, 433–437 (2003).Google Scholar
  19. 19.
    H.P. Boehm, “Chemical identification of surface groups,” Adv. Catal. Relat. Subj., 16, Nos. 8–9, 179–274 (1966).CrossRefGoogle Scholar
  20. 20.
    J. Gallego, C. Batiot-Dupeyat, and F. Mondrago, “Activation energies and structural changes in carbon nanotubes during different acid treatments,” J Therm. Anal. Calorim., 102, 597–602 (2013); DOI: Scholar
  21. 21.
    M. Kalogirou and Z. Samaras, “Soot oxidation. Kinetics from TG experiments,” J. Therm. Anal. Calorim., 99, 1005–1010 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Garbuz
    • 1
    Email author
  • L. N. Kuzmenko
    • 1
  • V. A. Petrova
    • 1
  • T. A. Silinska
    • 1
  • T. M. Terentieva
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations