Powder Metallurgy and Metal Ceramics

, Volume 58, Issue 3–4, pp 125–132 | Cite as

Physicochemical Properties of Hydrothermal Nanocrystalline ZrO2–Y2O3–CeO2 Powders

  • I. O. MarekEmail author
  • O. K. Ruban
  • V. P. Redko
  • M. I. Danilenko
  • S. A. Korniy
  • O. V. Dudnik

Nanocrystalline powders in the ZrO2−Y2O3−CeO2 system were produced by hydrothermal synthesis in an alkaline environment. The powder properties were studied by differential thermal analysis, Xray diffraction, electron microscopy, petrography, and BET. A low-temperature ZrO2-based cubic solid solution crystallized in the powders in hydrothermal conditions. The specific surface area of the powders was 81−110 m2/g. The lattice parameters of the ZrO2-based solid solution increased monotonically with higher CeO2 amount. The research results are needed for the microstructural design of composites in the ZrO2−Y2O3−CeO2 system with high resistance to low-temperature ageing.


ZrO2−Y2O3−CeO2 ZrO2-based solid solution hydrothermal synthesis nanocrystalline powder F-ZrO2 



The authors are grateful to V.M. Pavlikov, PhD in Chemical Sciences, for the differential thermal analysis and to L.D. Bilash for determining the powders’ specific surface area.


  1. 1.
    E.V. Dudnik, A.V. Shevchenko, A.K. Ruban, V.P. Red’ko, and L.M. Lopato, “Microstructural design of ZrO2–Y2O3–CeO2–Al2O3 materials,” Powder Metall. Met. Ceram., 49, Nos. 9–10, 528–536 (2011).CrossRefGoogle Scholar
  2. 2.
    E.V. Dudnik, S.N. Lakiza, Ya.S. Tishchenko, A.K. Ruban, V.P. Red’ko, A.V. Shevchenko, and L.M. Lopato, “Phase diagrams of refractory oxide systems and microstructural design of materials,” Powder Metall. Met. Ceram., 53, Nos. 5–6, 303–311 (2014).CrossRefGoogle Scholar
  3. 3.
    S. Sōmiya and T. Akiba, “Hydrothermal zirconia powders: A Bibliography,” J. Eur. Ceram. Soc., 19, No. 1, 81–87 (1999).CrossRefGoogle Scholar
  4. 4.
    A.V. Shevchenko, “Hydrothermal techniques in materials science,” in: Inorganic Materials Science. Fundamentals of Materials Science [in Russian], Kyiv (2008), Vol. 2, pp. 272–281.Google Scholar
  5. 5.
    O. Vasylkiv and Y. Sakka, “Hydroxide synthesis, colloidal processing and sintering of nano-size 3Y-TZP powder,” Scripta Mater., 44, 2219–2223 (2001).CrossRefGoogle Scholar
  6. 6.
    O. Vasylkiv, Y. Sakka, and V. Skorokhod, “Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nano-ceramic,” J. Am. Ceram. Soc., 86, No. 2, 299–304 (2003).CrossRefGoogle Scholar
  7. 7.
    O. Vasylkiv and Y. Sakka, “Synthesis and colloidal processing of zirconia nano-powder,” J. Am. Ceram. Soc., 84, No. 11, 2489–2494 (2001).CrossRefGoogle Scholar
  8. 8.
    E.V. Dudnik, “Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders,” Powder Metall. Met. Ceram., 48, Nos. 3–4, 238–248 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Yanjie, Z. Yingying, C. Yanning, C. Chongqi, L. Xingyi, and Z. Qi, “Low-temperature water–gas shift reaction over Au/ZrO2 catalysts using hydrothermally synthesized zirconia as supports,” Chin. J. Catal., 33, 230–236 (2012).CrossRefGoogle Scholar
  10. 10.
    Yu.M. Fedenko, T.A. Dontsova, and I.M. Astrelin, “Turbidimetric method for estimating the sizes of nanoparticles in ZrO2 white sols,” Nauk. Vist. NTUU KPI, Issue 1, 155–158 (2012).Google Scholar
  11. 11.
    M. Taguchi, T. Nakane, A. Matsushita, Y. Sakka, T. Uchikoshi, T. Funazukuri, and T. Naka, “One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions,” J. Supercrit. Fluids, 85, 57–61 (2014).CrossRefGoogle Scholar
  12. 12.
    E.V. Dudnik and A.V. Shevchenko, “Variation in properties of ZrO2–Y2O3–CeO2–Al2O3 powders during thermal treatment at 400 to 1300°C,” Powder Metall. Met. Ceram., 49, Nos. 3–4, 125–134 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Behbahani, S. Rowshanzamir, and A. Esmaeilifar, “Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia,” Procedia Eng., 42, 908–917 (2012).CrossRefGoogle Scholar
  14. 14.
    L.M. Rudkovskaya, R.N. Pshenichny, T.V. Pavlenko, and A.A. Omelchuk, “Nanostructured zirconium dioxide synthesized hydrothermally from zirconium concentrate decomposition products,” Nanosyst. Nanomater. Nanotekhnol., 10, No. 2, 351–360 (2012).Google Scholar
  15. 15.
    R. Espinoza-Gonzáleza, E. Mosquera, I. Moglia, R. Villarroel, and V.M. Fuenzalida, “Hydrothermal growth and characterization of zirconia nanostructures on non-stoichiometric zirconium oxide,” Ceram. Int. (2014), URL: [].
  16. 16.
    Ch.V. Reddy, I.N. Reddy, J. Shim, D. Kim, and K. Yoo, “Synthesis and structural, optical, photocatalytic, and electrochemical properties of undoped and yttrium-doped tetragonal ZrO2 nanoparticles,” Ceram. Int. (2018), URL: [].
  17. 17.
    G. Growth, L. Fei, L. Yanhuai, S. Zhongxiao, X. Kewei, M. Dayan, G. Bo, and C. Hon, “Characteristics of hydrothermally prepared yttria stabilized zirconia nanocrystals during calcination,” Rare Met. Mater. Eng., 46, No. 4, 899–905 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Duran, K. Sato, Y. Hotta, H. Göçmez, and K. Watari, “Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders,” Ceram. Int., 41, 5588–5593 (2015).CrossRefGoogle Scholar
  19. 19.
    A.O. Hongmin, L.U. Xiangsheng, Z. He, Z. Jing, H. Xiaowei, F. Zongyu, and X. Hong, “Preparation of scandia stabilized zirconia powder using microwave-hydrothermal method,” J. Rare Earths, 33, No. 7, 746–751 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Liao, Q. Wang, L. Nie, W. You, and J. Chen, “Single red upconversion and near-infrared downconversion luminescence properties of cubic ZrO2:Y3+–Yb3+–Er3+ nanophosphors via microwave hydrothermal synthesis,” Opt. Mater., 62, 479–484 (2016).CrossRefGoogle Scholar
  21. 21.
    M. Asiltürk, E. Burunkaya, F. Sayilkan, N. Kiraz, and E. Arpaç, “Structural and optical properties of thin films prepared from surface modified ZrO2,” J. Non-Cryst. Solids, 357, 206–210 (2011).CrossRefGoogle Scholar
  22. 22.
    X. Gan, Z. Yu, K. Yuan, C. Xu, X. Wang, L. Zhu, G. Zhang, and D. Xu, “Preparation of a CeO2-nanoparticle thermal radiation shield coating on ZrO2 fibers via a hydrothermal method,” Ceram. Int. (2017), URL: [ 2017].Google Scholar
  23. 23.
    L.J. Zhao, W. Zai, M.H. Wong, and H.C. Man, “Hydrothermal synthesis of Ag-ZrO2/r-GO coating on CoCrMo substrate,” Mater. Lett., 228, 314–317 (2018).CrossRefGoogle Scholar
  24. 24.
    Zh. Song, C. Duan, M. Shi, S. Li, and Y. Guan, “One-step preparation of ZrO2/SiO2 microspheres and modification with d-fructose 1, 6-bisphosphate as stationary phase for hydrophilicinteraction chromatography,” J. Chromatogr. (2017), URL: [].
  25. 25.
    O. Vasylkiv, Y. Sakka, Y. Maeda, and V.V. Skorokhod, “Nano-engineering of zirconia-noble metals composites,” J. Eur. Ceram. Soc., 24, No. 2, 469–473 (2004).CrossRefGoogle Scholar
  26. 26.
    O. Vasylkiv, Y. Sakka, Y. Maeda, and V.V. Skorokhod, “Sonochemical preparation and properties of Pt–3Y-TZP nano-composites,” J. Am. Ceram. Soc., 88, No. 3, 639–644 (2005).CrossRefGoogle Scholar
  27. 27.
    O.V. Almiasheva, A.Yu. Postnov, N.V. Maltseva, and E.A. Vlasov, “Thermally stable catalyst based on ZrO2–Al2O3 nanocomposite for hydrogen oxidation,” Nanosyst. Fiz. Khim. Mat., 3, No. 6, 75–82 (2012).Google Scholar
  28. 28.
    Zh. Song, P. Ning, Q. Zhang, H. Li, J. Zhang, Y. Wang, X. Liu, and Z. Huang, “Activity and hydrothermal stability of CeO2–ZrO2–WO3 for the selective catalytic reduction of NOx with NH3,” J. Environ. Sci. (2015), URL: [].
  29. 29.
    P. Ning, Z. Song, H.Li, Q. Zhang, X. Liu, J. Zhang, X. Tang, and Z. Huang, “Selective catalytic reduction of NO with NH3 over CeO2–ZrO2–WO3 catalysts prepared by different methods,” Appl. Surf. Sci. (2015), URL: [].
  30. 30.
    A.I. Ramos-Guerra, I. Martínez-Merlín, and C. Falcony, “The role of the stabilizing agent on the structural and luminescent properties of hydrothermally synthesized ZrO2: Tb3+phosphors,” Ceram. Int. (2018), URL: [].
  31. 31.
    M.A.I. Mohamed, V.-D. Dao, S.Y. Ahmed, M.M. Hamouda, A.Y. Mohamed, Y.K. Muhammad, H.-S. Choi, and A.M.B. Nasser, “Physicochemical and photo-electrochemical characterization of novel N-doped nanocomposite ZrO2/TiO2 photoanode towards technology of dye-sensitized solar cells,” Mater. Charact. (2017), URL: [doi:].
  32. 32.
    A.V. Shevchenko, E.V. Dudnik, V.V. Tsukrenko, A.K. Ruban, V.P. Red’ko, and L.M. Lopato, “Microstructural design of bioinert composites in the ZrO2–Y2O3–CeO2–Al2O3–CoC system,” Powder Metall. Met. Ceram., 51, Nos. 11–12, 724–733 (2012).Google Scholar
  33. 33.
    A.V. Shevchenko, E.V. Dudnik, A.K. Ruban, V.M. Vereschaka, V.P. Red’ko, and L.M. Lopato, “Hydrothermal synthesis of nanocrystalline powders in the ZrO2−Y2O3−CeO2 system,” Powder Metall. Met. Ceram., 46, Nos. 1–2, 18–24 (2007).CrossRefGoogle Scholar
  34. 34.
    I.M. Vasserman, Chemical Solution Deposition [in Russian], Leningrad (1980), p. 208.Google Scholar
  35. 35.
    O.Yu. Kurapova, V.G. Konakov, S.N. Golubev, and V.M. Ushakov, “Interaction between the synthesis procedure, phase formation, and particle size of precursor powders for ceramics with final composition 9CaO91ZrO2,” Nov. Ogneupory, No. 4, 47–52 (2014).Google Scholar
  36. 36.
    O.Yu. Kurapova, V.G. Konakov, S.N. Golubev, and V.M. Ushakov, “Phase formation and stability of solid solutions in nanosized zirconia dioxide precursors produced by cryochemical methods,” Vest. SPb Gos. Univ. Ser. 4: Fiz. Khim., 3(61), 296–310 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. O. Marek
    • 1
    Email author
  • O. K. Ruban
    • 1
  • V. P. Redko
    • 1
  • M. I. Danilenko
    • 1
  • S. A. Korniy
    • 2
  • O. V. Dudnik
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Karpenko Physicomechanical InstituteNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations