Advertisement

The Effect of Morphology and Particle-Size Distribution of VT20 Titanium Alloy Powders on the Mechanical Properties of Deposited Coatings

  • Z. A. Duriagina
  • I. A. LemishkaEmail author
  • A. M. Trostianchyn
  • V. V. Kulyk
  • S. G. Shvachko
  • T. L. Tepla
  • E. I. Pleshakov
  • T. M. Kovbasyuk
PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • 21 Downloads

The surface morphology of coatings produced from spherical and nonspherical VT20 titanium alloy powders with different particle-size distributions has been studied. The microhardness and plasticity of the coatings have been determined. The coatings deposited with nonspherical powders are characterized by a fine-grained structure and their micromechanical properties are comparable to those of the coatings deposited with spherical powders. The coatings deposited with the powders of the –160+40 μm fraction show an optimum ratio of microhardness, plasticity, and yield stress, regardless of their structural morphology.

Keywords

titanium alloy powders surface morphology nonspherical and spherical powders yield stress plasticity 

References

  1. 1.
    M. Zlenko, A. Popovich, and I. Mutylina, Additive Technologies in Mechanical Engineering [in Russian], Izd. Politekh. Univ., Saint Petersburg (2013), p. 221.Google Scholar
  2. 2.
    Ma Qian and Francis H. Froes, Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, USA (2015), p. 628.Google Scholar
  3. 3.
    M. Haznaferov, A. Ovchinnikov, and T. Yanko, “Technique for producing low-cost doped titanium powders for additive processes,” Titan, No. 2, 31–36 (2015).Google Scholar
  4. 4.
    P.D. Zhemanyuk, Yu.F. Basov, O.V. Ovchinnikov, A.A. Dzhugan, and A.V. Mikhailyutenko, “Use of titanium powders of new generation (HDH2) in additive technologies,” Aviat. Kosm. Tekh. Tekhnol., No. 8, 139–144 (2016).Google Scholar
  5. 5.
    Z.A. Duriagina, A.M. Trostyanchyn, I.A. Lemishka, A.A. Skrebtsov, and O.V. Ovchinnikov, “Grain-size characteristics of VT20 titanium alloy powder produced by plasma rotating electrode process,” Metalloznav. Obrob. Met., No. 1, 45–51 (2017).Google Scholar
  6. 6.
    A.V. Minitskii, M.O. Sysoev, and N.V. Minitska, “Duration of surface heat treatment and structure of iron–carbon powder alloys,” Metalloznav. Obrob. Met., No. 1, 3–6 (2016).Google Scholar
  7. 7.
    Yu.V. Milman, B.A. Galanov, and S.I. Chugunova, “Plasticity characteristic obtained through hardness measurement (overview No. 107),” Acta Metall. Mater., 41, No. 9, 2523–2532 (1993).Google Scholar
  8. 8.
    B.A. Galanov, Yu.V. Milman, S.I. Chugunova, and I.V. Goncharova, “Studying the mechanical properties of superhard materials by indentation technique,” Sverkhtverd. Mater., No. 3, 25–38 (1999).Google Scholar
  9. 9.
    I.V. Goncharova, Determining the Mechanical Properties of Materials with Different Crystalline Structures by Indentation Technique [in Ukrainian], Author’s Abstract of PhD Thesis in Technical Sciences: 01.04.07, Kyiv (2017), p. 23.Google Scholar
  10. 10.
    D. Tabor, The Hardness of Metals, Clarendon Press, Oxford (1951), p. 130.Google Scholar
  11. 11.
    Yu. Milman, S. Chugunova, and I. Goncharova, “Plasticity at absolute zero as a fundamental characteristic of dislocation properties,” Int. J. Mater. Sci. Appl., 3, No. 6, 353–362 (2014).Google Scholar
  12. 12.
    Yu.V. Milman, W. Gooch, S.I. Chugunova, I.V. Goncharova, and V.A. Goncharuk, “Evolution of structure and mechanical properties of target during impact loading and penetration of a kinetic energy projectile,” in: Proc. Hypervelocity Impact Symposium (HVIS 2003), Noordwijk, Holland (2003), p. 104.Google Scholar
  13. 13.
    Z.A. Duriagina, T.M. Kovbasyuk, and S.A. Bespalov, “The analysis of competitive methods of improvement of operational properties of functional layers of flat heating elements,” Usp. Fiz. Met., 17, No. 1, 29–51 (2016).CrossRefGoogle Scholar
  14. 14.
    Yu.V. Milman, I.V. Gridneva, and A.A. Golubenko, “Construction of stress–strain curves for brittle materials by indentation in a wide temperature range,” Sci. Sint., 39, 67–75 (2007).Google Scholar
  15. 15.
    Rolled Rods Made of Titanium and Titanium Alloys. Technical Specifications. Amendments 1 and 2: GOST 26492–85 [in Russian], Derzh. Kom. SRSR Standartov, Moscow (1987), p. 31.Google Scholar
  16. 16.
    J. Tong, C.R. Bowen, J. Persson, and A. Plummer, “Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture,” Mater. Sci. Technol., 33, 138–148 (2016).CrossRefGoogle Scholar
  17. 17.
    Chunze Yan, Liang Hao, Ahmed Hussein, Qingsong Wei, and Yusheng Shi, “Microstructural and surface modifications and hydroxyapatite coating of Ti–6Al–4V triply periodic minimal surface lattices fabricated by selective laser melting,” Mater. Sci. Eng. C, 75, 1515–1524 (2017).CrossRefGoogle Scholar
  18. 18.
    Z. Duriagina, A. Trostyanchyn, I. Lemishka, A. Skrebtsov, and O. Ovchinnikov, “The influence of chemical-thermal treatment on granulometric characteristics of titanium sponge powder,” Ukr. J. Mech. Eng. Mater. Sci., 3, No. 1, 73–80 (2017).Google Scholar
  19. 19.
    I.I. Bulyk, A.M. Trostyanchyn, V.V. Burkhovets’kyi, I.V. Borukh, Z.A. Duriagina, and I.A. Lemishka, “Dependence of the phase composition of Nd16Fe73.9Zr2.1B8 alloy on the conditions of milling in hydrogen,” Mater. Sci., 50, No. 4, 593–599 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Z. A. Duriagina
    • 1
    • 2
  • I. A. Lemishka
    • 1
    Email author
  • A. M. Trostianchyn
    • 1
  • V. V. Kulyk
    • 1
  • S. G. Shvachko
    • 1
  • T. L. Tepla
    • 1
  • E. I. Pleshakov
    • 1
  • T. M. Kovbasyuk
    • 1
  1. 1.Lviv Polytechnic National UniversityLvivUkraine
  2. 2.John Paul II Catholic University of LublinLublinPoland

Personalised recommendations