Advertisement

Effect of FeNiCrBSiC–MeB2 Material Composition on the Oxidation Behavior at High Temperatures

  • O. P. Umanskyi
  • M. S. StorozhenkoEmail author
  • M. V. Koshelev
  • M. M. Antonov
  • M. A. Vasylkivska
  • I. I. Tymofeeva
COMPOSITE MATERIALS
  • 1 Downloads

The effect of TiB2 and CrB2 additives on the oxidation behavior of composites made of the NiCrBSiC and FeNiCrBSiC self-fluxing alloys has been studied in air at temperatures to 800°C. It is found that the FeNiCrBSiC–20 wt.% TiB2 composite is oxidized most intensively. Oxidation occurs selectively: titanium diboride is oxidized at 450–550°C to form TiO2 and B2O3, and self-fluxing alloy components are oxidized at 570–730°C.

Keywords

self-fluxing alloy titanium diboride chromium diboride oxidation 

References

  1. 1.
    M.P. Planche, H. Liao, and C. Coddet, “Oxidation control in atmospheric plasma spraying coating,” Surf. Coat. Technol., 202, 69–76 (2007).CrossRefGoogle Scholar
  2. 2.
    Wei Qi, Yin Zhiyong, and Li Hui, “Oxidation control in plasma spraying NiCrCoAlY,” Appl. Surf. Sci., 258, 5094–5099 (2012).CrossRefGoogle Scholar
  3. 3.
    Yu.G. Tkachenko, D.Z. Yurchenko, and M.S. Koval’chenko, “High-temperature friction of refractory compounds,” Powder Metall. Met. Ceram., 47, Nos. 1–2, 129–136 (2008).CrossRefGoogle Scholar
  4. 4.
    A. Zikin, M. Antonov, I. Hussainova, L. Katona, and A. Gavrilovic, “High temperature wear of cermet particle reinforced NiCrBSi hardfacings,” Tribol. Int., 68, 45–55 (2013).CrossRefGoogle Scholar
  5. 5.
    G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, and K. Niemi, “Micromechanical properties and sliding wear behavior of HVOF-sprayed Fe-based alloy coatings,” Wear, 276–277, 29–47 (2012).CrossRefGoogle Scholar
  6. 6.
    A.P. Umanskii, A.D. Panasyuk, V.P. Konoval, I.A. Podchernyaeva, V.V. Malyshkin, and V.A. Kralya, “Plasma coatings of (TiCrC)–(FeCr) composite powder alloys: Structure and properties,” Powder Metall. Met. Ceram., 46, Nos. 3–4, 133–138 (2007).CrossRefGoogle Scholar
  7. 7.
    A.P. Umanskii, A.E. Terentiev, M.S. Storozhenko, and I.S. Martzenyuk, “Structurization of composites from self-fluxing alloys with titanium diboride additions,” Powder Metall. Met. Ceram., 53, Nos. 5–6, 359–367 (2015).Google Scholar
  8. 8.
    O. Umanskyi, I. Hussainova, M. Storozhenko, O. Terentyev, M. Antonov, and A. Kovalchenko, “Effect of oxidation on sliding wear behavior of NiCrSiB–TiB2 plasma sprayed coatings,” Key Eng. Mater., 604, 16–19 (2014).CrossRefGoogle Scholar
  9. 9.
    A.P. Umanskii, M.S. Storozhenko, I.V. Hussainova, A.E. Terentiev, M.M. Antonov, and A.M. Kovalchenko, “Structure, phase composition, and wear mechanisms of plasma-sprayed NiCrBSi–20 wt.% TiB2 coating,” Powder Metall. Met. Ceram., 53, Nos. 11–12, 663–671 (2015).CrossRefGoogle Scholar
  10. 10.
    O. Umanskyi, M. Storozhenko, I. Hussainova, O. Terentyev, M. Antonov, and A. Kovalchenko, “Effect of TiB2 additives on wear behavior of NiCrSiB-based plasma sprayed coatings,” Medžiagotyra, 22, 15–19 (2016).Google Scholar
  11. 11.
    D. Chaliampaliasa, G. Vourliasa, E. Pavlidoua, S. Skolianosb, and K. Chrissafia, “Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation,” Appl. Surf. Sci., 225, 3605–3612 (2009).CrossRefGoogle Scholar
  12. 12.
    D. Chaliampaliasa, G. Vourliasa, S. Skolianosb, E.K. Polychroniadis, and F. Stergioudis, “Surface microstructure of NiCrBSi coatings deposited by flame spray and evaluation of the oxidation resistance,” Solid State Phenom., 163, 51–54 (2010).CrossRefGoogle Scholar
  13. 13.
    Y.S. Wu, W.Q. Qiu, H.Y. Yu, X.C. Zhong, Z.W. Liu, D.C. Zeng, and S.Z. Li, “Cycle oxidation behavior of nanostructured Ni60–TiB2 composite coating sprayed by HVOF technique,” Appl. Surf. Sci., 257, 10224–10232 (2011).CrossRefGoogle Scholar
  14. 14.
    R.F. Voitovich and E.A. Pugach, “High-temperature oxidation of borides of the group IV metals. I. Oxidation of titanium diboride,” Powder Metall. Met. Ceram., 14, No. 2, 132–135 (1975).CrossRefGoogle Scholar
  15. 15.
    B. Lotfi, “Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating,” Trans. Nonferrous Met. Soc. China, No. 18, 243–247 (2008).Google Scholar
  16. 16.
    M.S. Storozhenko, A.P. Umanskyi, V.A. Lavrenko, S.S. Chuprov, and A.D. Kostenko, “Composites based on TiB2–SiC with a nickel–chromium matrix,” Powder Metall. Met. Ceram., 50, No. 11–12, 719–725 (2012).CrossRefGoogle Scholar
  17. 17.
    G.V. Samsonov (ed.), Physicochemical Properties of Oxides: Handbook [in Russian], Metallurgiya, Moscow (1987), p. 423.Google Scholar
  18. 18.
    R.J. Hussey, G.I. Sproule, D. Caplan, and M.J. Graham, “The growth and the structure of oxide films formed on Fe in O2 and CO2 at 550°C,” Oxid. Met., No. 11, 65–79 (1977).Google Scholar
  19. 19.
    D.A. Channing and M.J. Graham, “A study of iron oxidation processes by Mossbauer spectroscopy,” Corros. Sci., 12, 271–280 (1972).CrossRefGoogle Scholar
  20. 20.
    M.L. Emiliani, “Characterization and oxidation resistance of hot-pressed chromium diboride,” Mater. Sci. Eng., 172, 111–124 (1993).CrossRefGoogle Scholar
  21. 21.
    V.A. Lavrenko, L.A. Glebov, and E.S. Lugovskaya, “High-temperature oxidation of chromium boride in oxygen,” Zashch. Met., No. 9, 291–293 (1973).Google Scholar
  22. 22.
    S. Decterov, V. Swamy, and Jung In-Ho, “Thermodynamic modeling of the B2O3–SiO2 and B2O3–Al2O3 systems,” Int. J. Mater. Res., 98, No. 10, 987–994 (2007).CrossRefGoogle Scholar
  23. 23.
    M.I. Pashechko, “Wear resistance of eutectic Fe–Mn–C–B coatings doped with Si, Ni, and Cr,” Fiz. Khim. Mekh. Mater., No. 5, 109–114 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. P. Umanskyi
    • 1
  • M. S. Storozhenko
    • 1
    Email author
  • M. V. Koshelev
    • 1
  • M. M. Antonov
    • 2
  • M. A. Vasylkivska
    • 1
  • I. I. Tymofeeva
    • 1
  1. 1.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations