Advertisement

Superhard Abrasive Composite Powders Produced from Diamond and Cubic Boron Nitride with a Carbon Binder

  • V. G. PoltoratskiyEmail author
Article
  • 5 Downloads

The results of research aimed at developing superhard abrasive composites from starting diamond and cubic boron nitride powders with a carbon binder are presented. The materials were produced at subatmospheric pressure with the formation of condensed carbon released in the decomposition of hydrocarbons (at T = 1273–1523 K). The use of these materials as polycrystalline granules (particles) is effective for the production of grinding and polishing tools with improved performances.

Keywords

diamond cubic boron nitride carbon binder superhard abrasive composites grinding powders grinding tools pastes 

Notes

Acknowledgments

The author is grateful to N.V. Novikov, Academician of the National Academy of Sciences of Ukraine, A.A. Bochechka, ScD, and V.I. Lavrynenko, ScD, for assistance in this research effort.

References

  1. 1.
    N.V. Novikov (ed.), Tools Produced from Superhard Materials [in Russian], Mashinostroenie, Moscow (2005), p. 555.Google Scholar
  2. 2.
    N.V. Novikov (ed.), D.V. Fedoseev, A.A. Shulzhenko, and G.P. Bogatyreva, Synthesis of Diamonds [in Russian], Naukova Dumka, Kyiv (1987), p. 160.Google Scholar
  3. 3.
    V.V. Skorokhod, “Science of sintering: evolution of ideas, advances, current challenges, and new trends. II. Problem of active sintering. Early studies,” Powder Metall. Met. Ceram., 55, No. 1–2, 19–28 (2016).CrossRefGoogle Scholar
  4. 4.
    V.G. Poltoratskiy, V.I. Lavrynenko, M.N. Safonova, and G.A. Petasyuk, “A novel composite diamond-containing dispersed material of natural and synthetic diamonds powders and abrasive tools made of it,” Diamond Relat. Mater., 68, 66–70 (2016).CrossRefGoogle Scholar
  5. 5.
    V.I. Lavrynenko and M.V. Novikov (ed.), Superhard Abrasive Materials in Mechanical Processing: Encyclopedic Handbook [in Ukrainian], Inst. Sverkhtverd. Materl. Bakulya NAN Ukrainy, Kyiv (2013), p. 456.Google Scholar
  6. 6.
    N.K. Davidchuk and N.F. Gadzyra, “Formation of (SiC–C)–Al ceramic composites in air,” Powder Metall. Met. Ceram., 51, Nos. 1–2, 71–75 (2012).Google Scholar
  7. 7.
    Yu.M. Solonin, A.V. Nenakhov, A.G. Kostornov, M.I. Danilenko, V.F. Gorban, and M.V. Karpets, “Fluoroplastic–multi-walled carbon nanotube composites: structural, mechanical, and tribotechnical characteristics,” Powder Metall. Met. Ceram., 52, Nos. 11–12, 620–631 (2014).CrossRefGoogle Scholar
  8. 8.
    P.M. Silenko, D.B. Danko, O.M. Shlapak, O.G. Ershova, and Yu.M. Solonin, “Synthesis of TiO2 films by chemical vapor phase deposition and their properties,” Elektron. Mikrosk. Mitsn. Mater., No. 15, 145–146 (2008).Google Scholar
  9. 9.
    N.V. Novikov and V.P. Bondarenko, “Structured materials as a new area in materials science of composites,” in: Rock-Cutting and Metalworking Tools—Production and Application Equipment and Technology (Collected Scientific Papers) [in Russian], Issue 16, Inst. Sverkhtverd. Materl. Bakulya NAN Ukrainy, Kyiv (2013), pp. 393–404.Google Scholar
  10. 10.
    V.A. Sokolov, Natural Gases in Sedimentary Rock [in Russian], Leningrad (1976).Google Scholar
  11. 11.
    GOST 31371.7–2008. Natural Gas. Determining the Composition by Gas Chromatography with Uncertainty Estimate. Part 7. Methodology for Measuring the Molar Fraction of Components [in Russian], Standartinform, Moscow (2009), p. 21.Google Scholar
  12. 12.
    N.V. Novikov, Yu.I. Nikitin, V.G. Poltoratskiy, D.V. Fedoseev, S.K. Gordeev, and E.P. Smirnov, “Targeted production of diamond composites with a carbon binder and graded properties,” Sverkhtverd. Mater., No. 3, 13–19 (1995).Google Scholar
  13. 13.
    Yu.I. Nikitin, Production Technology and Quality Control of Diamond Powders [in Russian], Naukova Dumka, Kyiv (1984), p. 264.Google Scholar
  14. 14.
    V.G. Poltoratskiy, A.V. Lysenko, E.A. Pugach, Yu.I. Nikitin, and S.I. Filipchenko, “Structure of the carbon binder in superhard diamond-containing composite materials produced at low pressure,” Sverkhtverd. Mater., No. 5, 40–45 (1990).Google Scholar
  15. 15.
    V.G. Poltoratskiy, G.A. Petasyuk, M.N. Safonova, A.A. Bochechka, V.N. Tkach, and V.S. Shamraeva, “New abrasive composite material made of residual natural diamond powders,” Sverkhtverd. Mater., No. 2, 93–104 (2014).Google Scholar
  16. 16.
    G.M. Volkov and V.I. Kalugin, “Carbon formation macromechanism in high-temperature pyrolysis of hydrocarbons,” in: Graphite Structural Materials (Collected Papers) [in Russian], No. 3, Metallurgiya, Moscow (1967), pp. 96–103.Google Scholar
  17. 17.
    P.A. Tesner, Pyrolytic Carbon Formation Kinetics [in Russian], Mosk. Khim. Tekh. Inst., Moscow (1979), p. 203.Google Scholar
  18. 18.
    R.O. Grisdale et al., Proc. Roy. Soc., A264, No. 1316 (1961).Google Scholar
  19. 19.
    L.C. Kassel, J. Am. Chem. Soc., 54, No. 10 (1932)Google Scholar
  20. 20.
    B.V. Deriagin, D.V. Fedoseev, V.N. Bakul, V.A. Riabov, B.V. Spitsyn, Yu.I. Nikitin, A.V. Bochko, V.P. Varnin, A.V. Lavrentiev, and V.L. Primachuk, Physicochemical Gas Phase Synthesis of Diamond [in Russian], Tekhnika, Kyiv (1971), p. 45.Google Scholar
  21. 21.
    D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1969), p. 492.Google Scholar
  22. 22.
    B.V. Deriagin, “Measurement of specific surface area of porous and fine bodies using rarified gas flow resistance,” Dokl. Akad. Nauk SSSR, 53, No. 7, 627–630 (1946).Google Scholar
  23. 23.
    Yu.I. Nikitin, V.G. Poltoratskiy, S.P. Vnukov, and D.V. Fedoseev, “On diffusion kinetics in the growth and oxidation of diamond powders,” Sverkhtverd. Mater., No. 2, 19–22 (1987).Google Scholar
  24. 24.
    N.V. Novikov, Yu.I. Nikitin, V.G. Poltoratskiy, and S.K. Gordeev, “Filamentary carbon crystals,” Sverkhtverd. Mater., No. 2, 40–46 (1995).Google Scholar
  25. 25.
    P.W. Atkins, Physical Chemistry, Oxford University Press, Oxford (1978).Google Scholar
  26. 26.
    Yu.I. Nikitin, B.A. Uriukov, and V.G. Poltoratskiy, “Thermal stability and strength of superhard compact materials after heating,” in: Strength and Thermal Properties of Diamonds (Collected Scientific Papers) [in Russian], ISM AN USSR, Kyiv (1985), p. 68.Google Scholar
  27. 27.
    G.V. Berezhkova, Filamentary Crystals [in Russian], Moscow (1969), p. 158.Google Scholar
  28. 28.
    V.G. Poltoratskiy, G.P. Bogatyreva, G.S. Grishchenko, V.I. Lavrynenko, I.V. Leshchuk, Yu.I. Nikitin, O.O. Pasichny, and B.V. Sytnyk, Method of Producing Superhard Tool Composite Material [in Ukrainian], Ukrainian Patent 63614, IPC CO1B 31/06 (2006.01); patent owned Bakul INM NAN Ukrainy; appl. April 4, 2011; publ. October 10, 2011; Bulletin No. 19.Google Scholar
  29. 29.
    V.I. Lavrynenko, B.V. Sytnyk, V.G. Poltoratskiy, O.O. Bochechka, and V.Yu. Solod, “Composites based on cubic boron nitride micropowders with a carbon binder as functional elements in the working layer of abrasive diamond tools. 1. Composite grinding powders as abrasive elements,” Sverkhtverd. Mater., No. 3, 65–72 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations