Quality Analysis of Aluminized Surface Layers Produced by Electrospark Deposition

  • G. V. Kirik
  • O. P. Gaponova
  • V. B. Tarelnyk
  • O. M. Myslyvchenko
  • B. Antoszewski
PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • 8 Downloads

The structurization of aluminum coatings on steel 20 and 40 substrates produced in different ESD modes is considered. The thickness and microhardness of ‘white’ and transition layers and the surface roughness increase and chemical and phase compositions change with higher discharge energy. The coating formed at low discharge energies mainly consists of α-Fe and aluminum oxides. Electron microprobe analysis shows that the coating produced at high discharge energies consists of iron and aluminum intermetallics and free aluminum. Compared to steel 20, the electrospark-deposited coating on steel 40 has a deeper layer with increased hardness and has greater microhardness. The surface roughness remains virtually the same. To decease roughness and increase integrity of the coatings, we recommend electrospark deposition with the same electrode (aluminum), but at lower discharge energies (Wd = 0.52 J).

Keywords

electrospark alloying aluminizing microstructure coating surface X-ray diffraction electron microprobe analysis microhardness surface roughness 

References

  1. 1.
    A. E. Gitlevich, V. V. Mikhailov, N. Ya. Parkanskii, and V. M. Revutskii, Electrospark Deposition of Metallic Surfaces [in Russian], Stiintsa, Kishinev (1985), p. 196.Google Scholar
  2. 2.
    V. R. Ryabov, Steel Aluminizing [in Russian], Metallurgiya, Moscow (1973), p. 240.Google Scholar
  3. 3.
    S. A. Pyachin and A. A. Burkov, “Production of intermetallic coatings by electrospark deposition of titanium and aluminum onto steel substrate,” Elektron. Obrab. Mater., 51, No. 2, 16–23 (2015).Google Scholar
  4. 4.
    V. I. Agafii, V. A. Yurchenko, V. I. Yurchenko, et al., “Wear resistance of coatings produced by electrospark deposition of Al–Sn alloy electrodes,” Elektron. Obrab. Mater., 47, No. 6, 12–16 (2011).Google Scholar
  5. 5.
    C. Leyens, M. Peters, and W. A. Kaysser, “Intermetallic Ti–Al coatings for protection of titanium alloys: oxidation and mechanical behavior,” Surf. Coat. Technol., 94–95, 34–40 (1997).CrossRefGoogle Scholar
  6. 6.
    X. Wu, “Review of alloy and process development of TiAl alloys,” Intermetallics, 14, 1114–1122 (2006).CrossRefGoogle Scholar
  7. 7.
    O. A. Bannykh, P. B. Budberg, S. P. Alisova, et al., Phase Diagrams of Binary and Multicomponent Iron Systems: Handbook [in Russian], Metallurgiya, Moscow (1986), p. 440.Google Scholar
  8. 8.
    Yu. I. Mulin and A. D. Verkhoturov, Electrospark Deposition of Electrode Produced from Mineral Raw Materials onto Effective Surfaces of Tools and Machine Parts [in Russian], Dal’nauka, Vladivostok (1999), p. 110.Google Scholar
  9. 9.
    D. S. Gertsriken, V. F. Mazanko, Q. Shengru, et al., “Interaction of nickel and molybdenum with air gases under spark discharges,” in: Proc. 50th Int. Sci. Symp. Current Problems of Strength [in Russian], Vitebsk. Gos. Tekhnol. Univ., Vitebsk, Belarus (2010), Part. 1, pp. 164–167.Google Scholar
  10. 10.
    V. F. Mazanko, D. S. Gertsriken, V. M. Mironov, et al., “Interaction of aluminum with iron and air gases in electrospark deposition,” in: Proc. 11th Int. Conf. Interaction of Radiation with Solids [in Russian], Minsk, Belarus (2015), pp. 240–242.Google Scholar
  11. 11.
    V. B. Tarelnik (ed.), B. Antoszewski, V. S. Martsinkovskii, et al., Cementation by Electrospark Deposition: Monograph [in Russian], University Book, Sumy (2015), p. 220.Google Scholar
  12. 12.
    V. S. Martsinkovskii, V. B. Terelnik, and M. P. Bratushchak, Method for Cementation of Steel Parts by Electrospark Deposition [in Russian], Russian Federation Patent 2468899, IPC B 23H 9/00, Bulletin No. 34, publ. December 10 (2012), p. 11.Google Scholar
  13. 13.
    V. S. Martsinkovskii, V. B. Terelnik, and M. P. Bratushchak, Method for Cementation of Steel Parts by Electrospark Deposition [in Ukrainian], Ukrainian Patent 101715, IPC 23H 9/00, Bulletin No. 8, publ. January 25 (2013), p. 9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. V. Kirik
    • 1
  • O. P. Gaponova
    • 2
  • V. B. Tarelnyk
    • 3
  • O. M. Myslyvchenko
    • 4
  • B. Antoszewski
    • 5
  1. 1.UKRROSMETAL ConcernSumyUkraine
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.Sumy National Agrarian UniversitySumyUkraine
  4. 4.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  5. 5.Kielce University of TechnologyKielcePoland

Personalised recommendations