Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 7–8, pp 473–479 | Cite as

The Thermodynamic Properties and Phase Equilibria in Ce–Sn Alloys

  • V.S. Sudavtsova
  • K.Yu. Pastushenko
  • M.A. Shevchenko
  • M.I. Ivanov
  • V.G. Kudin
PHYSICOCHEMICAL MATERIALS RESEARCH
  • 2 Downloads

The thermodynamic properties of Ce–Sn alloys have been determined by calorimetry at 1500–1650 K in the composition range 0 ≤ xSn ≤ 0.2 and calculated using the ideal associated solution model. The minimum mixing enthalpy is found to be –67.2 ± 0.5 kJ/mol at xSn = 0.45, and the activities of components exhibit very large negative deviations from the ideal solution.

Keywords

thermodynamic properties Sn–Ce phase equilibria 

References

  1. 1.
    R. Vogel, “Metallographic messages from the Institute of Physical Chemistry of the Göttingen University. LXXVII. On cerium–tin alloys,” Z. Anorg. Allg. Chem., 72, No. 1, 319–328 (1911).CrossRefGoogle Scholar
  2. 2.
    R. Vogel and T. Heumann, “Contributions to the knowledge of the metals and alloys of the rare earths,” Z. Metallkd., 35, 29–42 (1943).Google Scholar
  3. 3.
    E.A. Franceschi and G.A. Costa, “The phase diagram of the Ce–Sn system up to 50% (at.) Sn,” J. Therm. Anal. Calorim., 34, No. 2, 451–456 (1988).CrossRefGoogle Scholar
  4. 4.
    E.A. Franceschi and G.A. Costa, “Phase equilibria in the Ce–Sn system: the partial equilibrium diagram from 50% (at.) Sn to Sn,” LAR2, 407–413 (1988).Google Scholar
  5. 5.
    P. Riani, D. Mazzone, G. Zanicchi, et al., “On the Ce–Cu–Sn system,” J. Phase Equilib., 19, No. 3, 239–251 (1998).CrossRefGoogle Scholar
  6. 6.
    J. Li, X. Tao, S. Dong, et al., “Thermodynamic assessment of Sn–Cu–Ce system,” CALPHAD, 43, 124–132 (2013).Google Scholar
  7. 7.
    H. Q. Dong, X.M. Tao, T. Laurila, et al., “Thermodynamic modeling of Au–Ce–Sn ternary system,” CALPHAD, 42, 38–50 (2013).Google Scholar
  8. 8.
    J. Kim, E. Thibodeau, Tetley-Gerard Kim, and In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Sn–RE systems: Part I. Sn–RE system (Re = La, Ce, Pr, Nd and Sm),” CALPHAD, 55, 113–133 (2016).Google Scholar
  9. 9.
    A. Palenzona, “Dynamic differential calorimetry of intermetallic compounds. I. Heat of formation, heat and entropy of fusion of rare earth-tin in compounds,” Thermochim. Acta, 5, No. 4, 473–480 (1973).CrossRefGoogle Scholar
  10. 10.
    A. Borsese, G. Borzone, and R. Ferro, “Thermochemistry of binary alloys of rare earths: a comparison between experimental and calculated heats of formation,” J. Less Common Met., 70, No. 2, 213–216 (1980).CrossRefGoogle Scholar
  11. 11.
    G. Borzone, A. Borsese, and R. Ferro, “On the alloying behavior of cerium with tin,” J. Less Common Met., 85, 195–197 (1982).Google Scholar
  12. 12.
    C. Colinet, A. Bessoud, A. Pasturel, and W. Mueller, “Enthalpies of formation of rare earth and uranium tin compounds,” J. Less Common Met., 143, 265–278 (1988).Google Scholar
  13. 13.
    C. Colinet, A. Pasturel, A. Percheron, and I. Achard, “Experimental and calculated enthalpies of formation of rare earth–tin alloys,” J. Less Common Met., 102, No. 2, 167–177 (1984).CrossRefGoogle Scholar
  14. 14.
    T. Mathews, H.N. Jena, T. Subramanian, P.R. Vasudeva Rao, and C.K. Mathews, “An electrochemical investigation of the thermodynamic properties of cerium stannide (CeSn3) and liquid tin-cerium alloys,” J. Alloys Compd., 228, 1–5 (1995).Google Scholar
  15. 15.
    V.S. Sudavtsova and G.I. Batalin, “Study of thermodynamic properties of liquid binary alloys in the Sn–(Sc, Ce, Cr) systems,” Melts, No. 2, 106–109 (1990).Google Scholar
  16. 16.
    M.V. Bulanova and V.R. Sidorko, Interaction of Rare Earth Metals with Tin [in Russian], Kyiv (1994), p. 7.Google Scholar
  17. 17.
    V.T. Witusiewicz, V.R. Sidorko, and M.V. Bulanova, “Assessment of thermodynamic functions of formation for rare earth silicides, germanides, stannides and plumbides,” J. Alloys Compd., 248, 233–245 (1997).Google Scholar
  18. 18.
    L.F. Yamshchikov, V.A. Lebedev, V.I. Kober, et al., “Thermodynamic properties of cerium alloys with fusible metals,” Izv. Akad. Nauk SSSR. Met., No. 5, 90–96 (1977).Google Scholar
  19. 19.
    V.A. Lebedev, V.I. Kober, and L.F. Yamshchikov, Thermal Chemistry of Rare Earth and Actinide Elements: Handbook [in Russian], Metalluriya, Chelyab. Otd., Chelyabinsk (1989), p. 336.Google Scholar
  20. 20.
    S. Cirafici, F. Canepa, G. L. Olcese, and G. Costa, “High temperature heat capacity of the LaSn3 and CeSn3 compounds,” Solid State Commun., 44, No. 11, 1507–1511 (1982).CrossRefGoogle Scholar
  21. 21.
    G. Costa, F. Canepa, and G.L. Olsese, “Thermodynamic properties of the CeSn3 mixed valence compound,” Solid State Commun., 44, No. 1, 67–69 (1982).CrossRefGoogle Scholar
  22. 22.
    J.N. Pratt and A.W.H. Morris, “Heats of solution of some rare-earth elements in liquid tin,” J. Less-Common Met., 10, No. 2, 91−97 (1966).CrossRefGoogle Scholar
  23. 23.
    R. Castanet, “Enthalpy of dissolution of lanthanum and cerium in tin,” C. R. Acad. Sci., 298, No. 1, 5–8 (1984).Google Scholar
  24. 24.
    L.F. Yamshchikov, V.A. Lebedev, I.F. Nichkov, et al., “First heats for dissolution of cerium in liquid aluminum, gallium, indium, tin, lead, and bismuth,” Izv. Vuz. Tsvet. Metall., No. 2, 64–66 (1983).Google Scholar
  25. 25.
    V.G. Kudin, M.A. Shevchenko, I.V. Mateiko, and V.S. Sudavtsova, “Thermodynamic properties of Al–La melts,” Zh. Fiz. Khim., 87, No. 3, 364–370 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V.S. Sudavtsova
    • 1
  • K.Yu. Pastushenko
    • 1
  • M.A. Shevchenko
    • 1
  • M.I. Ivanov
    • 1
  • V.G. Kudin
    • 2
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations