Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 57, Issue 7–8, pp 421–430 | Cite as

Size-Dependent Effects in Low-Temperature Sintering and Alloying of Nanopowders

  • Yu.S. Kaganovskii
  • L.N. Paritskaya
Article
  • 12 Downloads

Sintering of nanosized powder mixtures occurs at relatively low temperatures and is accompanied by interdiffusion between the powders and low-temperature homogenization or formation of new phases. The kinetics of interdiffusion depends on the grain size of the structure being formed in the powder compacts. We consider size effects of interdiffusion during sintering at sufficiently low temperatures when bulk diffusion is completely frozen and homogenization or formation of other phases occurs due to diffusion-induced motion of grain boundaries. These effects take place both in the mixtures of mutually soluble powder materials and materials that form intermetallic compounds. We analyze mainly the results obtained as development of the studies that were initiated by Professor Yakov Yevseevich Geguzin.

Keywords

nanosized powder mixtures kinetics of interdiffusion size effects sintering 

References

  1. 1.
    C.C. Koch, “The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review,” Nanostruct. Mater, 2, 109–129 (1993).Google Scholar
  2. 2.
    H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., 33, 223–315 (1989).Google Scholar
  3. 3.
    C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., 40, 41–64 (1995).Google Scholar
  4. 4.
    C. Suryanarayana and C.C. Koch, in: C. Suryanarayana (ed.), Nonequilibrium Processing of Materials, Pergamon, Oxford (1999), pp. 313–346.Google Scholar
  5. 5.
    K. Upadhya (ed.), Plasma Synthesis and Processing of Materials, TMS, Warrendarle, PA (1993).Google Scholar
  6. 6.
    C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., 46, 1–184 (2001).Google Scholar
  7. 7.
    Ya.Ye. Geguzin, Yu.S. Kaganovskii, and L.N. Paritskaya, “Cold homogenization during interdiffusion in dispersed media,” Phys. Met. Metall., 54, 120–130 (1982).Google Scholar
  8. 8.
    L.N. Paritskaya, “Diffusion processes in dispersed systems (review),” Powder Metall. Met. Ceram., 29, No. 11, 893–904 (1990).CrossRefGoogle Scholar
  9. 9.
    V.M. Koshevich, A.N. Gladkikh, M.V. Karpovskyi, and V.N. Klimenko, “Interdiffusion in two-layer Pd/Ag films. III. TEM investigation of diffusion-induced grain boundary migration,” Interface Sci., 2, 261–280 (1994).Google Scholar
  10. 10.
    F.J. Den Broeder, “Interface reaction and a special form of grain boundary diffusion in the Cr–W system,” Acta Metall., 20, 319–332 (1972).Google Scholar
  11. 11.
    M. Hillert and G.R. Purdy, “Chemically induced grain boundary migration,” Acta Metall., 26, 333–340 (1978).Google Scholar
  12. 12.
    R.W. Balluffi and J.W, Cahn, “Mechanism for diffusion induced grain boundary migration,” Acta Metall., 29, 493–500 (1981).Google Scholar
  13. 13.
    J.M. Cahn, J.D. Pan, and R.W. Balluffi, “Diffusion induced grain boundary migration,” Scripta Metall. Mater., 13, 503–509 (1979).Google Scholar
  14. 14.
    A.H. King, “Diffusion Induced Grain Boundary Migration,” Int. Mater. Rev., 32, 173–189 (1987).Google Scholar
  15. 15.
    A. Tschöpe, R. Birringer, and H. Gleiter, “Calorimetric measurements of the thermal relaxation in nanocrystalline platinum,” J. Appl. Phys., 71, 53–91 (1992).Google Scholar
  16. 16.
    V.Y. Gertsman and R. Birringer, “On the room-temperature grain growth in nanocrystalline copper,” Scr. Metall. Mater., 30, 577–581 (1994).Google Scholar
  17. 17.
    H. Gleiter, “Diffusion in nanostructured metals,” Phys. Status Solidi B., 172, 41–51 (1992).Google Scholar
  18. 18.
    S. Herth, T. Michel, H. Tanimoto, M. Eggersmann, R. Dittmar, H.-E. Schaefer, W. Frank, and R. Würschum, “Self-diffusion in nanocrystalline Fe and Fe-rich alloys,” Defect Diffus. Forum., 194–199, 1199–1204 (2001).Google Scholar
  19. 19.
    S.V. Divinski, F. Hisker, Y-S. Kang, J-S. Lee, and Chr. Herzig, “59Fe grain boundary diffusion in nanostructed γ-Fe–Ni,” Z. Metallkd., 93, 265–272 (2002).Google Scholar
  20. 20.
    L.N. Paritskaya, Y. Kaganovskii, and V.V. Bogdanov, “Size-dependent interdiffusion in nanomaterials,” Solid State Phenom., 101–102, 123–130 (2005).Google Scholar
  21. 21.
    Yu. Kaganovskii and L.N. Paritskaya, “Diffusion in nanomaterials,” in: H.S. Nalwa (ed.), Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers (2004), Vol. 2, pp. 399–427Google Scholar
  22. 22.
    V.I. Novikov, L.I. Trusov, V.V. Lopovok, and T.P. Geileshvili, “The mechanism of low-temperature diffusion activated by boundary migration,” Fiz. Tverd. Tela., 25, 36–96 (1983).Google Scholar
  23. 23.
    V.V. Bogdanov, V.V. Lisenko, and L.N. Paritskaya, “Diffusion-induced decay of dispersed layered structures in process of low temperature homogenization,” Fiz. Met. Metall., No. 4, 117–123 (1990).Google Scholar
  24. 24.
    W. Gust, S. Mayer, A. Bögel, and B. Predel, “Generalized representation of grain boundary self-diffusion data,” J. de Physique, 46, C4-537–C4-544 (1985).Google Scholar
  25. 25.
    Ya.E. Geguzin and Yu.S. Kaganovskii, Diffusion Processes on a Crystal Surface [in Russian], Energoatomizdat, Moscow (1984).Google Scholar
  26. 26.
    L.N. Paritskaya and V.V. Bogdanov, “The effect of dispersion-hardening dopants on low temperature homogenization in dispersed powder systems,” Sci. Sinter., 26, No. 3, 259–268 (1994).Google Scholar
  27. 27.
    D.L. Beke, G.A. Langer, G. Molnár, G. Erdélyi, G.L. Katona, A. Lakatos, and K. Vad, “Kinetic pathways of diffusion and solid state reactions in nanostructured thin films,” Philos. Mag., 93, 1960–1970 (2013).Google Scholar
  28. 28.
    L.N. Paritskaya, V.V. Bogdanov, and Yu. Kaganovskii, “Size-dependent kinetics of reactive diffusion in nanograined Ag–Sn thin films,” Mater. Lett., 193, 292–294 (2017).Google Scholar
  29. 29.
    Yu. Kaganovskii, L.N. Paritskaya, and V.V. Bogdanov, “Grain boundary induced propagation of intermetallic phases in nano-grained Cu–Sn thin film coulples,” J. Nano Res., 7, 59–68 (2009).Google Scholar
  30. 30.
    T. Takenaka and M. Kajihara, “Phase penetration of Sn into Ag by diffusion induced recristallization,” Mater. Trans., 47, 822–828 (2006).Google Scholar
  31. 31.
    K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Reactive diffusion between Ag and Sn at solid state temperatures,” Mater. Trans., 46, 969–973 (2005).Google Scholar
  32. 32.
    L.N. Paritskaya and V.V. Bogdanov, “Kinetic peculiarities of Cd21Ni5 intermetallic growth,” Defect Diffus. Forum., 143–147, 615–620 (1997).Google Scholar
  33. 33.
    Y.L. Corcoran, A.H. King, N. de Lanerolle, and B. Kim, “Grain boundary diffusion and growth of titanium silicide layers on silicon,” J. Electron. Mater., 19, 1177–1183 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of Crystal PhysicsKarazin National UniversityKharkovUkraine

Personalised recommendations