Advertisement

Plant Molecular Biology Reporter

, Volume 37, Issue 5–6, pp 450–463 | Cite as

Ectopic Expression of StERF94 Transcription Factor in Potato Plants Improved Resistance to Fusarium solani Infection

  • Mariam CharfeddineEmail author
  • Mariam Samet
  • Safa Charfeddine
  • Donia Bouaziz
  • Radhia Gargouri Bouzid
Original Paper

Abstract

ERF proteins (ethylene-responsive factors), which belong to the AP2/ERF superfamily, play essential roles in plant development, growth, and response to abiotic and biotic constraints. In a previous study, we cloned a cDNA encoding the StERF94 factor from potato plants and the phylogenetic analyses showed that it belongs to group IX of the ERF family. Genes of this group are known to be involved in plant response to biotic stress. The StERF94 cDNA was overexpressed in transgenic potato plants and the resulting transgenic plants showed a high tolerance to salinity. In this study, we investigated the response of StERF94 transgenic plants to biotic stress by evaluating their resistance to Fusarium solani infection. A significant enhanced resistance to the fungus was noticed in the transgenic plants which displayed limited malondialdehyde and H2O2 production and increasing antioxidant enzyme activities. Our findings also revealed that overexpression of StERF94 in potato enhanced expression of relevant defense genes like those encoding PR proteins (pathogenesis related) which led to a protection against disease propagation and reduction of fungus development in plant tissues.

Keywords

Potato ERF Fusarium solani Transgenic plants 

Notes

Acknowledgments

This work was financed by the ministry of High Education and Scientific Research Tunisia. We would like to thank doctor Anne-Lise for her help in English writing.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11105_2019_1171_MOESM1_ESM.docx (228 kb)
ESM 1 (DOCX 228 kb)

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126Google Scholar
  2. Alexieva V, Sergio I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markars in pea and wheat. Plant Cell Environ 24:1337–1344CrossRefGoogle Scholar
  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arnon DL (1949) A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaries. Plant Physiol 24:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Anal Biochem 161:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bouaziz D, Pirrello J, Ben Amor H, Hammami A, Charfeddine M, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bouaziz D, Jbir R, Charfeddine S, Saidi MN, Gargouri-Bouzid R (2015) The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult 121:237–248CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  11. Carlos M (1987) la bactériose vasculaire de la pomme de terre “pseudomonas Solanaceanum” Bulletin d’Information Technique 1 a’ 19 Centre de la pomme de terre (CIP) 83–88Google Scholar
  12. Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050PubMedPubMedCentralCrossRefGoogle Scholar
  13. Champion A, Hebrard E, Parra B, Bournaud C, Marmey P, Tranchant C, Nicole M (2009) Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate ethylene and Xanthomonas. Mol Plant Pathol 10:471–485PubMedPubMedCentralCrossRefGoogle Scholar
  14. Charfeddine M, Saidi MN, Charfeddine S, Gargouri-Bouzid R (2015) Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L). Mol Biotechnol 57:348–358PubMedCrossRefGoogle Scholar
  15. Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang X (2012) Expression of an alfalfa (Medicago sativa L) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075PubMedCrossRefGoogle Scholar
  16. Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE-RESPONSE-FACTOR1 regulates abiotic-stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cook D, Dreyer D, Bonnet D, Howell M, Nony E, Vander-Bosh K (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium melitoti. Plant Cell 7:43–55PubMedPubMedCentralGoogle Scholar
  18. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdeyhde as toxic molecule ad biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328PubMedCrossRefGoogle Scholar
  19. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter 1(4):19–21CrossRefGoogle Scholar
  20. Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z (2010) Overexpression of TaPIEP1 a pathogen induced ERF gene of wheat confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomic 10:215–226CrossRefGoogle Scholar
  21. El-Kassas HY, Khairy HMA (2009) Trial for biological control of a pathogenic fungus (Fusarium solani) by some marine microorganisms. Am Eurasian J Agric Environ Sci 5:434–440Google Scholar
  22. Fischer U, Droge-Laser W (2004) Over-expression of NtERF5 a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant-Microbe Interact 17:1162–1171PubMedCrossRefGoogle Scholar
  23. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121PubMedCrossRefGoogle Scholar
  24. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101PubMedCrossRefGoogle Scholar
  26. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid and its product is phosphorylated by the Pto kinase. Plant Cell Online 12:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4 pti5 and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618PubMedCrossRefGoogle Scholar
  29. Harrison SJ, Curtis MD, McIntyre CL, Maclean DJ, Manners JM (1995) Differential expression of peroxidase isogenes during the early stages of infection of the tropical forage legume Stylosanthes humilis by Colletotrichum gloeosporioides. Mol Plant-Microbe Interact 8:398–406PubMedCrossRefGoogle Scholar
  30. He P, Warren RF, Zhao T, Shan L, Zhu L, Tang X, Zhou JM (2001) Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv Tomato. Mol Plant-Microbe Interact 14:1453–1457PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hodges M, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxydation in plant tissues containing anthocyanin another interfering compounds. Planta 207:604–611CrossRefGoogle Scholar
  32. Hossain Z, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) Modulation of the antioxidant system in citrus under water logging and subsequent drainage. J Plant Physiol 166:1391–1404PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought tolerance in plants. Biotechnol Prog 27:297–306PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jung C, Lyou S, Yeu S, Kim M, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007a) Microarray-based screening of jasmonate responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053–1063PubMedCrossRefPubMedCentralGoogle Scholar
  35. Jung J, Won SY, Suh SC, Kim HR, Wing R, Jeong Y, Hwang I, Kim M (2007b) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575–588PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kim YH, Jeong JC, Park S, Lee HS, Kwak SS (2012) Molecular characterization of two ethylene response factor genes in sweet potato that respond to stress and activate the expression of defense genes in tobacco leaves. J Plant Physiol 169:1112–1120PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Lin J, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S (2013) Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiol Biochem 62:70–78PubMedCrossRefPubMedCentralGoogle Scholar
  38. Liang HX, Lu Y, Liu HX, Wang FD, Xin ZY, Zhang ZY (2008) A novel activator-type ERF of Thinopyrum intermedium TiERF1 positively regulates defence responses. J Exp Bot 59:3111–3120PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lindemose S, O'Shea C, Krogh JM, Skriver K (2013) Structure function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878PubMedPubMedCentralCrossRefGoogle Scholar
  40. Liu WY, Chiou SJ, Ko CY, Lin TY (2011a) Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. J Plant Physiol 168:375–381PubMedCrossRefGoogle Scholar
  41. Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y (2011b) Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot 62:825–840PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  43. Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JH, Karaba A, Pereira A (2006) BOLITA an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation differentiation pathways. Plant Mol Biol 62:825–843PubMedCrossRefPubMedCentralGoogle Scholar
  44. Meng X, Li F, Liu C, Zhang C, Wu Z, Chen Y (2010) Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L). Plant Mol Biol Rep 8:176–183CrossRefGoogle Scholar
  45. Mittler R (2002) Oxidative stress: antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  46. Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143CrossRefGoogle Scholar
  47. Müller M, Munné-Bosch S (2015) Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiology 169(1):32–41PubMedPubMedCentralCrossRefGoogle Scholar
  48. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plants 15:437–497CrossRefGoogle Scholar
  49. Muyolo NG, Lipps PE, Schmitthenner AF (1993) Reactions of dry bean lima bean and soybean cultivars to Rhizoctonia root and hypocotyls rot and web blight. Plant Dis 77:234–238CrossRefGoogle Scholar
  50. Nakano T, Suzuki K, Fujimura T (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedPubMedCentralGoogle Scholar
  52. Pan XQ, Fu DQ, Zhu BZ, Lu CW, Luo YB (2013) Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharvest Biol Technol 75:28–36CrossRefGoogle Scholar
  53. Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Bouzayen M (2006) Sl-ERF2 a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47:1195–1205PubMedCrossRefGoogle Scholar
  54. Pirrello J, Prasad BC, Zhang W et al (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol:112–190Google Scholar
  55. Qi J, Wang J, Gong Z, Zhou JM (2017) Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol 38:92–100PubMedCrossRefGoogle Scholar
  56. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  57. Samet M, Charfeddine S, Kammoun L, Nouri Ellouze O, Gargouri R (2018) Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environ Sci Pollut Res Int 25:18921–18937.  https://doi.org/10.1007/s11356-018-1960-z CrossRefPubMedGoogle Scholar
  58. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification phylogeny and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Gen Genomics 284:455–475CrossRefGoogle Scholar
  59. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360PubMedCrossRefGoogle Scholar
  60. Srivastava R, Kumar R (2019) The expanding roles of APETALA2/ethylene responsive factors and their potential applications in crop improvement. Brief Funct Genomics.  https://doi.org/10.1093/bfgp/elz001 CrossRefGoogle Scholar
  61. Tian Y, Zhang HW, Pan XW, Chen XL, Zhang ZJ, Lu XY, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866PubMedCrossRefGoogle Scholar
  62. Tuzun S (2001) The relationship between pathogen-induced systemic resistance (ISR) and multigenic (horizontal) resistance in plants. Eur J Plant Pathol 107:85–93CrossRefGoogle Scholar
  63. Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida NI (1997) The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci U S A 94:1029–1034PubMedPubMedCentralCrossRefGoogle Scholar
  64. Vaewoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Res 17:23–62Google Scholar
  65. Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ (2007) RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 27:8296–8305PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wang M, Sun Y, Sun G, Liu X, Zhai L, Shen Q, Guo S (2015) Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Sci Rep 5:7722.  https://doi.org/10.1038/srep07722 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wu K, Tian L, Hollingworth J, Brown DC, Miki B (2002) Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol 128:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wu LJ, Zhang ZJ, Zhang HW, Wang XC, Huang RF (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt drought and freezing. Plant Physiol 148:1953–1963PubMedPubMedCentralCrossRefGoogle Scholar
  69. Xiao-Qi P, Da-Qi F, Zhu ZB, Luo YB (2013) Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharvest Biol Technol 75:28–36CrossRefGoogle Scholar
  70. Xu H, Wang X, Chen J (2010) Overexpression of the Rap24f transcriptional factor in Arabidopsis promotes leaf senescence. Sci China Life Sci 53:1221–1226PubMedCrossRefPubMedCentralGoogle Scholar
  71. Xu ZS, Chen M, Li LC, Ma ZY (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585PubMedCrossRefPubMedCentralGoogle Scholar
  72. Yan K, HanG RC, Zhao S, Wu X, Bian T (2018) Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.00479
  73. Yang S, Li X, Chen WQ, Liu TG, Zhong SF, Ma LX, Zhang M, Zhang H, Yu D, Luo P (2016) Wheat resistance to fusarium head blight is associated with changes in photosynthetic parameters. Plant Dis 100:847–852PubMedCrossRefPubMedCentralGoogle Scholar
  74. Yanyan L, Sanxiong F, Song C, Wei Z, Cunkou Q (2016) Ethylene response factor BnERF2-like (ERF24) from Brassica napus L enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop J 4:199–211CrossRefGoogle Scholar
  75. Yao W, Lei W, Boru Z, Shengji W, Renhua L, Tingbo J (2016) Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J Plant Physiol 198:23–31PubMedCrossRefPubMedCentralGoogle Scholar
  76. Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292PubMedPubMedCentralCrossRefGoogle Scholar
  77. Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A (2003) Molecular biology and application of plant peroxidase genes. Appl Microbiol Biotechnol 2003(60):665–670CrossRefGoogle Scholar
  78. Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF12 promoter in Arabidopsis. Plant Mol Biol 75:321–331PubMedPubMedCentralCrossRefGoogle Scholar
  79. Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R (2004) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55:825–834PubMedCrossRefPubMedCentralGoogle Scholar
  80. Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y (2008) Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59:4095–4107PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene an AP2/ERF type transcription factor for increased tolerances to salt drought and diseases in transgenic tobacco. J Exp Bot 60:3781–3796PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zhang JL, Flowers TJ, Wang SM (2010a) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60CrossRefGoogle Scholar
  83. Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010b) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818PubMedCrossRefGoogle Scholar
  84. Zhang ZJ, Wang J, Zhang RX, Huang RF (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287PubMedCrossRefGoogle Scholar
  85. Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP26 participates in ABA salt and osmotic stress responses. Gene 457:1–12PubMedCrossRefGoogle Scholar
  86. Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170:923–933PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mariam Charfeddine
    • 1
    Email author
  • Mariam Samet
    • 1
  • Safa Charfeddine
    • 1
  • Donia Bouaziz
    • 1
  • Radhia Gargouri Bouzid
    • 1
  1. 1.Laboratoire d’Amélioration des Plantes et Valorisation des AgroressourcesEcole Nationale d’Ingénieurs de SfaxSfaxTunisia

Personalised recommendations