Advertisement

Plant Molecular Biology Reporter

, Volume 36, Issue 5–6, pp 685–694 | Cite as

In Vivo Haploid Production in Crop Plants: Methods and Challenges

  • Anshul WattsEmail author
  • Vajinder Kumar
  • Ritesh Kumar Raipuria
  • R. C. Bhattacharya
Review

Abstract

Doubled haploids offer a rapid method of producing homozygous lines for accelerated breeding of varieties and hybrids necessary to address the food demands of the next 2–3 decades. Further, doubled haploids are invaluable in basic genetic research such as gene discovery, genetic mapping, and genome sequencing, especially in perennial crops. Haploids are produced mainly through in vitro culture of anthers, microspores, or ovules. Some inter-specific, inter-generic crosses and crosses of different ploidy of the same species or different species also consistently give haploids through selective elimination of a set of chromosomes coming from one of the parents during zygotic divisions. Haploid inducer (HI) lines that yield haploids upon crossing have been commercially employed in breeding of maize, barley, and wheat. In recent years, novel ways of artificially synthesizing HI lines have been devised based on basic studies with Arabidopsis. The role of centromeric histone protein coding gene CENH3, which plays critical role in centromere specification and chromosome segregation, has been exploited to engineer HI lines in Arabidopsis and maize. Further, the discovery of the gene encoding pollen-specific phospholipase A (MTL/NLD/ZmPLA1) responsible for inducing haploids in maize has opened an additional way of constructing HI lines in crop species. We present here a brief overview of various in vivo haploid production methods and discuss the challenges in practical use of doubled haploid technology.

Keywords

CENH3 Haploid Doubled haploid Haploid inducer line Haploid induction frequency Phospholipase A 

Notes

Acknowledgments

We thank S.R. Bhat, Emeritus scientist, ICAR-National Research Centre on Plant Biotechnology, New Delhi, for giving suggestions to the manuscript.

References

  1. Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet 117:581–594.  https://doi.org/10.1007/s00122-008-0803-6 CrossRefPubMedGoogle Scholar
  2. Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200CrossRefGoogle Scholar
  3. Birchler JA, Gao Z, Sharma A, Presting GG, Han F (2011) Epigenetic aspects of centromere function in plants. Curr Opin Plant Biol 14:217–222.  https://doi.org/10.1016/j.pbi.2011.02.004 CrossRefPubMedGoogle Scholar
  4. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants. J Hered 28:393–411.  https://doi.org/10.1093/oxfordjournals.jhered.a104294 CrossRefGoogle Scholar
  5. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647.  https://doi.org/10.1126/science.55.1433.646 CrossRefPubMedGoogle Scholar
  6. Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357.  https://doi.org/10.3389/fpls.2016.00357 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cai Z, Guo-liang X, Xianghui L, Ya-lin D (2012) The breeding of JAAS3-haploid inducer with high frequency parthenogenesis in maize. J Maize Sci 15:1–4Google Scholar
  8. Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum: V. the occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci U S A 10:121–124CrossRefGoogle Scholar
  9. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382.  https://doi.org/10.1086/282098 CrossRefGoogle Scholar
  10. Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci U S A 112:11205–11210.  https://doi.org/10.1073/pnas.1505856112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Conner JA, Podio M, Ozias-Akins P (2017) Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod 30:41–52.  https://doi.org/10.1007/s00497-017-0298-x CrossRefPubMedGoogle Scholar
  12. Davies DR (1974) Chromosome elimination in inter-specific hybrids. Heredity 32:267–270CrossRefGoogle Scholar
  13. Drinnenberg IA, deYoung D, Henikoff S, Malik HS (2014) Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife 3Google Scholar
  14. Drinnenberg IA, Henikoff S, Malik HS (2016) Evolutionary turnover of kinetochore proteins: a ship of Theseus? Trends Cell Biol 26:498–510CrossRefGoogle Scholar
  15. Dunwell JM (2010) Haploid in flowering plants: origin and exploitation. Plant Biotechnol J 8:377–424.  https://doi.org/10.1111/j.1467-7652.2009.00498.x CrossRefPubMedGoogle Scholar
  16. Evans MM (2007) The indeterminate gametophyte 1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19(1):46–62.  https://doi.org/10.1105/tpc.106.047506 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393CrossRefGoogle Scholar
  18. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375.  https://doi.org/10.1016/j.tplants.2007.06.007 CrossRefPubMedGoogle Scholar
  19. Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125CrossRefGoogle Scholar
  20. Gaines EF, Aase HC (1926) A haploid wheat plant. Am J Bot 13:373–385CrossRefGoogle Scholar
  21. Gilles LM, Khaled A, Laffaire JP, Chaignon S, Gendort G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J-P, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717.  https://doi.org/10.15252/embj.201796603 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guha S, Mahshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497.  https://doi.org/10.1038/204497a0 CrossRefGoogle Scholar
  23. Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315CrossRefGoogle Scholar
  24. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438.  https://doi.org/10.1146/annurev-arplant-043014-114714 CrossRefPubMedGoogle Scholar
  25. Jackson D (2017) No sex please, we’re (in) breeding. EMBO J 36:703–704.  https://doi.org/10.15252/embj.201796735 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A 112(36):11211–11216.  https://doi.org/10.1073/pnas.1504333112 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876.  https://doi.org/10.1038/225874a0 CrossRefPubMedGoogle Scholar
  28. Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414.  https://doi.org/10.3389/fpls.2016.00414 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109.  https://doi.org/10.1038/nature20827 CrossRefPubMedGoogle Scholar
  30. Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424CrossRefGoogle Scholar
  31. Kermicle JL (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am J Bot 58:1–7.  https://doi.org/10.1002/j.1537-2197.1971.tb09938.x CrossRefGoogle Scholar
  32. Kermicle JL (1994) Indeterminate gametophyte (ig): biology and use. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York, pp 388–393CrossRefGoogle Scholar
  33. Kim NS, Armstrong KC, Fedak G, Ho K, Park NI (2002) A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome 45:165–174CrossRefGoogle Scholar
  34. Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL (2015) Point mutations in centromeric histone induce postzygotic incompatibility and uniparental inheritance. PLoS Genet 11(9):e1005494.  https://doi.org/10.1371/journal.pgen.1005494 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat X maize crosses. Theor Appl Genet 76:393–397.  https://doi.org/10.1007/BF00265339 CrossRefPubMedGoogle Scholar
  36. Liu ZZ, Song TM (2000) Correlation analysis between induction of maize parthenogenesis haploid in vivo and intersperm nucleus distances in pollen tubes germinating in vitro of male parent. Acta Bot Boreal 20:495–502Google Scholar
  37. Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522.  https://doi.org/10.1016/j.molp.2017.01.011 CrossRefPubMedGoogle Scholar
  38. Magoon ML, Khanna KR (1963) Haploids. Caryologia 16:191–235.  https://doi.org/10.1080/00087114.1963.10796097 CrossRefGoogle Scholar
  39. Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970CrossRefGoogle Scholar
  40. Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogue F, Chan SW, Siddiqi I, Mercier R (2011) Synthetic clonal reproduction through seeds. Science 331:876CrossRefGoogle Scholar
  41. Murovec J, Bohanec, B (2011) Haploids and doubled haploids in plant breeding. In: I.Y. Abdurakhmonov, Ed., Plant breeding. InTech 2012. doi: https://doi.org/10.5772/29982
  42. Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 111:781–793.  https://doi.org/10.1534/genetics.111.133066 CrossRefGoogle Scholar
  43. Ravi M, Chan SWL (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–619.  https://doi.org/10.1038/nature08842 CrossRefPubMedGoogle Scholar
  44. Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F, Panoli A, Sundaresan V, Britt AB, Comai L, Chan SWL (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 5:5334.  https://doi.org/10.1038/ncomms6334 CrossRefPubMedGoogle Scholar
  45. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108:498–505.  https://doi.org/10.1073/pnas.1103190108 CrossRefGoogle Scholar
  46. Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MPA, Korf I, Lysak MA, Comai L, Chan SWL (2015) Catastrophic chromosomal restructuring during genome elimination in plants. Elife 4:e06516CrossRefGoogle Scholar
  47. Turcotte EL, Feaster CV (1963) Haploids: high frequency production from single-embryo seeds in a line of Pima cotton. Science 140:1407–1408CrossRefGoogle Scholar
  48. Turcotte EL, Feaster CV (1969) Semigametic production of haploids in pima cotton. Crop Sci 9:653–655CrossRefGoogle Scholar
  49. Wijnker E, van Dun K, de Snoo CB, Lelivelt CL, Keurentjes JJ, Naharudin NS, Ravi M, Chan SW, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis generates homozygous parental lines from a heterozygous plant. Nat Genet 44(4):467–470CrossRefGoogle Scholar
  50. Wu P, Li H, Ren J, Chen S (2014) Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 196:413–421.  https://doi.org/10.1007/s10681-013-1043-7 CrossRefGoogle Scholar
  51. Wutz A (2014) Haploid animal cells. Development 141:1423–1426.  https://doi.org/10.1242/dev.102202 CrossRefPubMedGoogle Scholar
  52. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4(8):530–533CrossRefGoogle Scholar
  53. Zhang JF, Stewart JMD (2004) Semigamy gene is associated with chlorophyll reduction in cotton. Crop Sci 44:2054–2062CrossRefGoogle Scholar
  54. Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731.  https://doi.org/10.1104/pp.113.223982 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anshul Watts
    • 1
    Email author
  • Vajinder Kumar
    • 1
  • Ritesh Kumar Raipuria
    • 1
  • R. C. Bhattacharya
    • 1
  1. 1.ICAR-National Research Centre on Plant BiotechnologyNew DelhiIndia

Personalised recommendations