Plant Molecular Biology Reporter

, Volume 36, Issue 5–6, pp 897–906 | Cite as

Population Structure and Genetic Diversity of Common Bean Accessions from Brazil

  • Giseli ValentiniEmail author
  • Maria Celeste Gonçalves-Vidigal
  • Julio Cesar Ferreira Elias
  • Leonel Domingos Moiana
  • Noimilto Nicolau Augusto Mindo
Original Paper


Brazil can be considered a secondary center of common bean diversification (Phaseolus vulgaris L.), and the landraces grown throughout Brazil are valuable sources of genes for breeding programs and evolutionary studies. The objective of this study was to evaluate the population structure of 109 accessions of common bean, including cultivars and landraces from southern and central-western regions of Brazil. The population structure analysis based on simple sequence repeat markers demonstrates that the accessions can be separated into two distinct subpopulations—the Andean and the Mesoamerican—with some admixtures observed according to Delta K = 2 groups. The optimal number of groups was found at K = 4, a level at which the Andean accessions were divided into two subpopulations and the Mesoamerican accessions into two subpopulations. Accordingly, the accessions preserved in the current collection maintained by the Universidade Estadual de Maringá are an important source of genes for germplasm conservation programs and the development of common bean cultivars.


Phaseolus vulgaris L. Accessions Gene diversity SSR markers 


Funding Information

The authors thank the National Council for Scientific and Technological Development (CNPq) for financial support and scholarship grants and the Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarship grants.


  1. Afanador LK, Haley SD, Kelly JD (1993) Adoption of a ‘mini-prep’ DNA extraction protocol for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Ann Rep Bean Improv Coop 36:10–11Google Scholar
  2. Barbosa L (2010) Food and sociability on the contemporary Brazilian plate. Etnográfica 14:567–586CrossRefGoogle Scholar
  3. Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273CrossRefGoogle Scholar
  4. Bertoldo JG, Coimbra JLM, Guidolin AF, Andrade LRB, Nodari RO (2014) Agronomic potential of genebank landrace elite accessions for common bean. Sci Agric 71:120–125CrossRefGoogle Scholar
  5. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli SP, Logozzo G, Stougaard J, Mcclean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A 109:788–796CrossRefGoogle Scholar
  6. Blair MW, Pedraza F, Buendia H, Gaitán-Solís E, Beebe S, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374CrossRefGoogle Scholar
  7. Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe S (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109CrossRefGoogle Scholar
  8. Blair MW, Díaz LM, Buendía HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972CrossRefGoogle Scholar
  9. Blair MW, Brondani RVP, Díaz LM, Del Peloso MJ (2013) Diversity and population structure of common bean from Brazil. Crop Sci 53:1983–1993CrossRefGoogle Scholar
  10. Botstein D, White RL, Skolmick H, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  11. Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813CrossRefGoogle Scholar
  12. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257PubMedPubMedCentralGoogle Scholar
  13. Cichy KA, Porch TG, Beaver JS, Cregan PB, Fourie D, Glahn RP, Grusak MA, Kamfwa K, Katuuramu DN, McClean P, Mndolwa E, Nchimbi-Msolla S, Pastor-Corrales MA, Miklas PN (2015) A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Sci 55:1–12CrossRefGoogle Scholar
  14. Díaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor Appl Genet 114:143–154CrossRefGoogle Scholar
  15. Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Ashok KA, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:3–42CrossRefGoogle Scholar
  16. Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  19. Freitas FO (2006) Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. Pesq Agropec Bras 41:1199–1203CrossRefGoogle Scholar
  20. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136CrossRefGoogle Scholar
  21. Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ Bot 40:439–478Google Scholar
  22. Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from Phaseolin electrophoretic variability. II. Europe and Africa. Econ Bot 42:86–104CrossRefGoogle Scholar
  23. Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468CrossRefGoogle Scholar
  24. Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from Phaseolin electrophoretic variability. I. The Americas. Econ Bot 42:73–85CrossRefGoogle Scholar
  25. Grisi MCM, Blair MW, Gepts P, Brondani C, Pereira PAA, Brondani RPV (2007) Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 × Jalo EEP558. Genet Mol Res 6:691–706PubMedGoogle Scholar
  26. Kelly JD, Kolkman JM, Schneider K (1998) Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102:343–356CrossRefGoogle Scholar
  27. Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992CrossRefGoogle Scholar
  28. Lin L-Z, Harnly JM, Pastor-Corrales MA, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107:399–410CrossRefGoogle Scholar
  29. Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  30. McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, Mcclean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116CrossRefGoogle Scholar
  31. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  32. Pereira PA, Souza CRB (1992) Tipos de faseolina em “raças” de feijão no Brasil. Pesq Agropec Bras 27:1219–1221Google Scholar
  33. Pereira T, Coelho SMM, Bogo A, Guidolin AF, Miquelluti DJ (2009) Diversity in common bean landraces from South Brazil. Acta Bot Croat 68:79–92Google Scholar
  34. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  35. Ramalho MAP, Silva GS, Dias LAS (2009) Genetic plant improvement and climate changes. Crop Breed Appl Biot 9:189–195CrossRefGoogle Scholar
  36. Rezende AA, Pacheco MTB, Silva VSN, Ferreira TAPC (2018) Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Food Sci Technol 38:421–427CrossRefGoogle Scholar
  37. Schmutz J, Mcclean PE, Mamidi S, Wu GA et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713CrossRefGoogle Scholar
  38. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  40. Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of single sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434CrossRefGoogle Scholar
  41. Zeven AC (1989) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Faculdade de Engenharias e ArquiteturaFEITEPMaringáBrazil
  3. 3.Instituto de Investigação Agrária de MozambiqueNampulaMozambique
  4. 4.Associação Nacional de Extensão Rural (AENA)NampulaMozambique

Personalised recommendations