Plant Molecular Biology Reporter

, Volume 36, Issue 5–6, pp 812–821 | Cite as

Identification of Genes Involved in Flavonoid Biosynthesis of Chinese Narcissus (Narcissus tazetta L. var. chinensis)

  • Guiqing Wang
  • Biyun Yang
  • Jiacheng Wu
  • Peng Luo
  • Muhammad Anwar
  • Andrew C. Allan
  • Kui Lin-Wang
  • Richard V. Espley
  • Lihui ZengEmail author
Original Research


Chinese narcissus (Narcissus tazetta L. var. chinensis Roem.) is a popular flower in Asia. However, flower colors are limited with all cultivars having a white perianth and yellow corona. Previous studies have shown no anthocyanin accumulation in this species. The reason for an absence of anthocyanins remains unknown, with the flavonoid biosynthetic pathway in this flower recently being investigated. In this study, a transcriptomic approach combined with gene expression and biochemical analysis was used to predict and annotate genes in the flavonoid biosynthetic pathway. Results showed that the major flavonoid metabolites are flavonols and proanthocyanidins. Proanthocyanidin biosynthesis is exclusively catechin-based, with the gene encoding leucoanthocyanidin reductase (LAR) being well expressed. We identified 16 unigenes encoding key enzymes involved in flavonoid biosynthesis. Flavonol synthase (FLS) and dihydroflavonol reductase (DFR) appear to play important roles in regulating proanthocyanidin and flavonol levels, while anthocyanidin synthase (ANS) expression is not detected. Our results suggest that the absence of anthocyanins in Chinese narcissus is due to high expression of LAR and FLS, and a lack of ANS expression.


Chinese narcissus Flavonoid metabolic pathway Structural genes Anthocyanin 


Funding Information

This work was supported by Fujian Natural Science Fund, China (No. 2016J01109) and Fujian Agriculture and Forestry University International Scientific and Technological Exchange and Cooperation Project, China (Kxb16013A).

Supplementary material

11105_2018_1119_MOESM1_ESM.docx (610 kb)
ESM 1 (DOCX 609 kb)


  1. Abeynayake SW, Panter S, Chapman R, Webster T, Rochfort S, Mouradov A, Spangenberg G (2012) Biosynthesis of proanthocyanidins in white clover flowers: cross talk within the flavonoid pathway. Plant Physiol 158:666–678CrossRefGoogle Scholar
  2. Abrahams S, Tanner GJ, Larkin PJ, Ashton AR (2002) Identification and b iochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol 130:561–576CrossRefGoogle Scholar
  3. Afendi FM, Okada T, Yamazaki, M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, et al. (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1.
  4. Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102CrossRefGoogle Scholar
  5. Booth VH (1957) β-Carotene in the flowers of Narcissus. Biochem J 65:660–663CrossRefGoogle Scholar
  6. Chen XQ, Wu YX (1991) Additional notes on Chinese sacred lily, with a discussion with Mr. Lu. J Wuhan Bot Res 9:70–74. (in chinese)Google Scholar
  7. Chen S, Li M, Zheng G, Wang T, Lin J, Wang S, Wang X, Chao Q, Cao S, Yang Z, Yu X (2018) Metabolite profiling of 14 Wuyi Rock tea cultivars using UPLC-QTOF MS and UPLC-QqQ MS combined with chemometrics. Molecules 23:104. CrossRefPubMedCentralGoogle Scholar
  8. Collas A, Velde CMLV, Blockhuys F (2010) 2-(4-Formyl-2,6-dimethoxyphenoxy)acetic acid. Acta Cryst E66:o3003. CrossRefGoogle Scholar
  9. Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638CrossRefGoogle Scholar
  10. Debes MA, Arias ME, Grellet-Bournonville CF, Wulff AF, Martínez-Zamora MG, Castagnaro AP, Díaz-Ricci JC (2011) White-fruited Duchesnea indica (Rosaceae) is impaired in ANS gene expression. Am J Bot 98:2077–2083CrossRefGoogle Scholar
  11. Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins – a fnal frontier in favonoid research. New Phytol 165:9–28CrossRefGoogle Scholar
  12. Ertas A, Boga M, Yilmaz MA, Yesil Y, Hasimi N, Kaya MS et al (2014) Chemical compositions by using LC-MS/MS and GC-MS and biological activities of Sedum sediforme (Jacq.) Pau. J Agric Food Chem 62:4601–4609CrossRefGoogle Scholar
  13. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefGoogle Scholar
  14. Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC (2012) Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J Exp Bot 63:5437–5450CrossRefGoogle Scholar
  15. Li X, Lu M, Tang DQ, Shi YM (2015) Composition of carotenoids and flavonoids in narcissus cultivars and their relationship with flower color. PLoS One.
  16. Lim SH, You MK, Kim DH, Jim JK, Lee JY, Ha SH (2016) RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway. Plant Physiol Biochem 109:482–490CrossRefGoogle Scholar
  17. Lou Q, Liu YL, Qi YY, Jiao JS, Tian FF, Jiang L et al (2014) Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot 65:3157–3164CrossRefGoogle Scholar
  18. Maier C, Conrad J, Carle R, Weiss J, Schweiggert RM (2015) Phenolic constituents in commercial aqueous Quillaja (Quillaja saponaria Molina) wood extracts. J Agric Food Chem 63(6):1756–1762CrossRefGoogle Scholar
  19. Ren Y, Yang J, Lu B, Jiang Y, Chen Y et al (2017) Structure of pigment metabolic pathways and their contributions to white tepal color formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai. Int J Mol Sci 18(9):1923. CrossRefPubMedCentralGoogle Scholar
  20. Shimada S, Takahashi K, Sato Y, Sakuta M (2004) Dihydroflavonol 4-reductase cDNA from non-Anthocyanin-Producing Species in the Caryophyllales. Plant Cell Physiol 45:1290–1298CrossRefGoogle Scholar
  21. Shimada S, Inoue YT, Sakuta M (2005) Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant J 44:950–959CrossRefGoogle Scholar
  22. Shirley BW (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnolog. Plant Physiol 126:485–493CrossRefGoogle Scholar
  23. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants: purifcation of legume .leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656CrossRefGoogle Scholar
  24. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30:826–828CrossRefGoogle Scholar
  25. Valadon LRG, Mummery RS (1968) Carotenoids in floral parts of a narcissus, a daffodil and a tulip. J Biochem 106:79CrossRefGoogle Scholar
  26. Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant favonoid biosynthesis. Science 299:396–399CrossRefGoogle Scholar
  27. Zeng YF, Zhang HP, Wen C, Zeng LH (2012) Carotenoid pigment components and carotenogenic gene expression in Zhangzhou narcissus(Narcissus tazetta var. chinensis). Chin J Trop Crops 33:1–7 (in chinese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of HorticultureFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.The New Zealand Institute for Plant & Food Research Ltd, (Plant and Food Research)Mt Albert Research CentreAucklandNew Zealand

Personalised recommendations