Advertisement

Plant Molecular Biology Reporter

, Volume 36, Issue 4, pp 653–662 | Cite as

Development of Species-Specific InDel Markers in Citrus

  • Qiuying Fang
  • Lun Wang
  • Huiwen Yu
  • Yue Huang
  • Xiaolin Jiang
  • Xiuxin Deng
  • Qiang Xu
Original Paper
  • 48 Downloads

Abstract

Citrus taxonomy is complex owing to the existence of a wide range of species: Poncirus is used mainly for rootstock; Fortunella produces small fruit and edible pericarp; and Citrus comprises the most widespread fruit crop species worldwide. Rapidly increasing genome resources from different citrus species facilitate the development of convenient and genome-wide molecular markers that can be applied to both inter- and intra-species analyses. In this study, by comparing the genome sequences of four citrus species, a set of 1958 InDels were identified and 453 candidate InDels were converted into PCR-based markers. Among these candidate InDels, 268 (65%) exhibited length polymorphisms from 30 bp to 200 bp when applied to seven species from the genera Poncirus, Fortunella and Citrus. Seven InDel markers exhibited high intraspecific polymorphisms in a natural pummelo population. The results showed that the InDel markers are effective for both inter- and intra-specific variation and identification analyses. These InDel markers are expected to be applied to germplasm identification, phylogenetic analysis, genetic diversity evaluation and marker-assisted breeding in citrus.

Keywords

Insertion-deletion marker Citrus Germplasm identification Phylogenetic analysis Genetic diversity 

Notes

Acknowledgments

This work was funded by the National Natural Science Foundation of China (31572105 and 31330066) and the Fundamental Research Funds for the Central Universities.

Supplementary material

11105_2018_1111_MOESM1_ESM.pdf (109 kb)
Supplementary Table 1 The primer sequence of 268 InDel markers. (PDF 109 kb)
11105_2018_1111_MOESM2_ESM.pdf (523 kb)
Supplementary Table 2 The polymorphism information of the 268 InDel markers in the eight citrus accessions. (PDF 523 kb)
11105_2018_1111_MOESM3_ESM.pdf (53 kb)
Supplementary Table 3 The germplasm information of the pummelo population. (PDF 53 kb)
11105_2018_1111_Fig6_ESM.png (130 kb)
Supplementary Fig. 1

Statistical data of InDel fragment-length polymorphisms of 268 markers in the eight species. Black spots InDel polymorphisms in specific species with single spots representing the unique polymorphic InDels of one species and connected spots representing the polymorphic InDels shared by several species. Column chart on the vertical axis indicates the total number of polymorphic markers for each species. Column chart on the horizontal axis indicates the number of every type of polymorphisms. (PNG 129 kb)

11105_2018_1111_MOESM5_ESM.tif (10.2 mb)
High resolution image. (TIF 10494 kb)
11105_2018_1111_Fig7_ESM.png (2.1 mb)
Supplementary Fig. 2

The InDel length-polymorphisms of the marker HZAU-IND-chr2-149714A-cgr for the 128 pummelo accessions. Detailed information of the 128 accessions are available in Supplementary Table 3. The accessions with number 29, 42, 50 and 98 are grapefruits not used for analysis. M 100 bp DNA ladder. (PNG 2185 kb)

11105_2018_1111_MOESM6_ESM.tif (20.1 mb)
High resolution image (TIF 20566 kb)

References

  1. Amar MH, Biswas MK, Zhang ZW, Guo WW (2011) Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci Hortic (Amsterdam) 128:220–227CrossRefGoogle Scholar
  2. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531CrossRefPubMedGoogle Scholar
  3. Barkley NA, Krueger RR, Federici CT, Roose ML (2009) What phylogeny and gene genealogyanalyses reveal about homoplasy in citrus microsatellite alleles. Plant Syst Evol 282:71–86CrossRefGoogle Scholar
  4. Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547CrossRefPubMedGoogle Scholar
  5. Biswas MK, Chai LJ, Mayer C, Xu Q, Guo WW, Deng XX (2012) Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in citrus. Mol Biol Rep 39:5373–5386CrossRefPubMedGoogle Scholar
  6. Britten RJ, Rowen L, Williams J, Cameron RA (2003) Majority of divergence between closely related DNA samples is due to indels. Proc Natl Acad Sci USA 100:661–4665CrossRefGoogle Scholar
  7. Carbonell-Caballero J, Alonso R, Ibanez V, Terol J, Talon M, Dopazo J (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol Biol Evol 32:2015–2035CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen C, Bowman KD, Choi YA, Dang PM, Rao MN et al (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genome 4:1–10CrossRefGoogle Scholar
  9. Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from citrus species. Plant Mol Biol Rep 21:177–178CrossRefGoogle Scholar
  10. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176CrossRefGoogle Scholar
  12. Das S, Upadhyaya HD, Srivastava R, Bajaj D, Gowda CLL et al (2015) Genome-wide insertion-deletion (in Del) marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res 22:377–386CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eyre-Walker A (1999) Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152:675–683PubMedPubMedCentralGoogle Scholar
  14. Fang DQ, Krueger RR, Roose ML (1998) Phylogenetic relationships among selected Citrus germplasm accessions revealed by intersimple sequence repeat (ISSR) markers. J Am Soc Hortic Sci 123:612–617Google Scholar
  15. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822CrossRefGoogle Scholar
  16. Field D, Wills C (1998) Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. Cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc Natl Acad Sci USA 95:1647–1652CrossRefPubMedGoogle Scholar
  17. Froelicher Y, Dambier D, Bassene JB, Costantino G, Lotfy S, Didout C, Beaumont V, Brottier P, Risterucci AM, Luro F, Ollitrault P (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8:119–122CrossRefPubMedGoogle Scholar
  18. Froelicher Y, Mouhaya W, Bassene JB, Costantino G, Kamiri M, Luro F, Morillon R, Ollitrault P (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genome 7:49–61CrossRefGoogle Scholar
  19. Gao Q, Yue G, Li W, Wang J, Xu J, Yin Y (2012) Recent progress using high-throughput sequencing technologies in plant molecular breeding. J Integr Plant Biol 54:215–227CrossRefPubMedGoogle Scholar
  20. Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of in Del and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Genomics 287:77–94CrossRefPubMedGoogle Scholar
  21. Garcia-Lor A, Curk F, Snoussi-Trifa H, Morillon R, Ancillo G, Luro F, Navarro L and Ollitrault P (2013a) A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  22. Garcia-Lor A, Ancillo G, Navarro L, Ollitrault P (2013b) Citrus (Rutaceae) SNP markers based on competitive allele-specific PCR; transferability across the Aurantioideae subfamily. Appl Plant Sci 1:1200406CrossRefGoogle Scholar
  23. Gmitter FG, Chen CH, Machado MA, Souza AA, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genet Genome 8:611–626CrossRefGoogle Scholar
  24. Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317Google Scholar
  25. Guo F, Yu H, Tang Z, Jiang X, Wang L, Wang X, Xu Q, Deng X (2015) Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genet Genomes 11:1–11CrossRefGoogle Scholar
  26. Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260CrossRefPubMedGoogle Scholar
  27. Herrero R, Asins MJ, Pina JA, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Genet 93:1327–1334CrossRefPubMedGoogle Scholar
  28. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429CrossRefPubMedGoogle Scholar
  30. Jiang D, Ye QL, Wang FS, Cao L (2010) The mining of citrus EST-SNP and its application in cultivar discrimination. Agric Sci China 9:179–190CrossRefGoogle Scholar
  31. Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12:656–664CrossRefPubMedPubMedCentralGoogle Scholar
  32. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ladanyia M, Ladaniya M (2007) Citrus fruit: biology, technology and evaluation. Academic, New YorkGoogle Scholar
  34. Lee TH, Chafets DM, Reed W, Wen L, Yang Y, Chen J, Utter GH, Owings JT, Busch MP (2006) Enhanced ascertainment of microchimerism with real-time quantitative polymerase chain reaction amplification of insertion-deletion polymorphisms. Transfusion 46:1870–1878CrossRefPubMedGoogle Scholar
  35. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465CrossRefPubMedGoogle Scholar
  36. Li XM, Xie RJ, Lu ZH, Zhou ZQ (2010) The origin of cultivated citrus as inferred from internal transcribed spacer and chloroplast DNA sequence and amplified fragment length polymorphism fingerprints. J Am Soc Hortic Sci 135:341–350Google Scholar
  37. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  38. Liu YQ, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sc F 11:530–545CrossRefGoogle Scholar
  39. Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang XW, Wu J (2013) Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet 126:231–239CrossRefPubMedGoogle Scholar
  40. Lmai A, Nonaka K, Kuniga T, Yoshioka T, Hayashi T (2018) Genome-wide association mapping of fruit-quality traits using genotyping-by-sequencing approach in citrus landraces, modern cultivars, and breeding lines in Japan. Tree Genet Genomes 14:24CrossRefGoogle Scholar
  41. Lu BR, Cai X, Jin X (2009) Efficient Indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci 19:1241–1252CrossRefGoogle Scholar
  42. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex tan) to other citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lv H, Yang L, Kang J, Wang Q, Wang X, Fang Z, Liu Y, Zhuang M, Zhang Y, Lin Y, Yang Y, Xie B, Liu B, Liu J (2013) Development of InDel markers linked to fusarium wilt resistance in cabbage. Mol Breeding 32:961–967CrossRefGoogle Scholar
  44. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nicolosi E, Deng ZN, Gentile A, La MS, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166CrossRefGoogle Scholar
  46. Nicolosi E, Malfa SL, El-Otmani M, Negbi M, Goldschmidt EE (2005) The search for the authentic citron (Citrus medica L.): historic and genetic analysis. HortScience 40:1963–1968Google Scholar
  47. Okwu, Emenike (2006) Evaluation of the phytonutrients and vitamin contents of citrus fruits. Int J Mol Med Adv Sci 2:1–6Google Scholar
  48. Ollitrault F, Terol J, Martin AA, Pina JA, Navarro L, Talon M, Ollitrault P (2012a) Development of in Del markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. Am J Bot 99:e268–e273CrossRefPubMedGoogle Scholar
  49. Ollitrault P, Terol J, Garcia-Lor A, Berard A, Chauveau A, Froelicher Y, Belzile C, Morillon R, Navarro L, Brunel D, Talon M (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics 13:13CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ollitrault P, Garcia-Lor A, Terol J, Curk F, Ollitrault F, Talón M, Navarro L (2015) Comparative values of SSRs, SNPs and InDels for Citrus genetic diversity analysis. Acta Hortic 1065:457–466CrossRefGoogle Scholar
  51. Oueslati A, Salhi-Hannachi A, Luro F, Vignes H, Mournet P, Ollitrault P (2017) Genotyping by sequencing reveals the interspecific C. Maxima/C. Reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS One 12:e0185618CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pan CH, Wang ZB, Ma YY, Yin YJ, Zhang YF, Zuo SM, Chen ZX, Pan XB (2008) InDel and SNP markers and their application in map-based cloning of rice genes. Rice Sci 15:251–258CrossRefGoogle Scholar
  53. Pang XM, Hu CG, Deng XX (2006) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resour Crop EV 54:429–436CrossRefGoogle Scholar
  54. Park S, Yu HJ, Mun JH, Lee SC (2010) Genome-wide discovery of DNA polymorphism in Brassica rapa. Mol Genet and Genomics 283:135–145CrossRefGoogle Scholar
  55. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pereira R, Phillips C, Alves C, Amorim A, Carracedo A, Gusmão L (2009) A new multiplex for human identification using insertion/deletion polymorphisms. Electrophoresis 30:3682–3690CrossRefPubMedGoogle Scholar
  57. Raman H, Raman R, Wood R, Martin P (2006) Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). Mol Breeding 18:171–183CrossRefGoogle Scholar
  58. Roose ML, Close TJ (2008) Genomics of citrus, a major fruit crop of tropical and subtropical regions. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 187–201CrossRefGoogle Scholar
  59. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AKC, Pereira R, Gusmão L, Amorim A, Guerreiro JF, Zago MA, Matte C, Hutz MH, Santos SEB (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INDEL) ancestry-informative marker (Hardigan et al.) panel. Hum Mutat 31:184–190CrossRefPubMedGoogle Scholar
  60. Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371CrossRefPubMedGoogle Scholar
  61. Schlotterer C, Wiehe T (1999) Microsatellites, a neutral marker to infer selective sweeps. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 238–247Google Scholar
  62. Swingle WT (1946) The botany of citrus and its wild relatives in the orange subfamily. In: Webber HS, Batchelor DL (eds) The Citrus industry. University of California, Berkeley, pp 128–474Google Scholar
  63. Talon M, Gmitter FG (2008) Citrus genomics. Int J Plant Genomics 2008:528–361CrossRefGoogle Scholar
  64. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  65. Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. Am J Bot 65:869–881CrossRefGoogle Scholar
  66. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vali U, Brandström M, Johansson M, Ellegren H (2008) Insertion-deletion polymorphisms (Indels) as genetic markers in natural populations. BMC Genet 9:715–720CrossRefGoogle Scholar
  68. Vasemagi A, Gross R, Palm D, Paaver T, Primmer CR (2010) Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genomics 11:156CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang YY, Chen J, Francis DM, Shen HL, Wu TT, Yang WC (2010) Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theor Appl Genet 121:1199–1207CrossRefPubMedGoogle Scholar
  70. Wang X, Xu YT, Zhang SQ, Cao L, Huang Y et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772CrossRefPubMedGoogle Scholar
  71. Weber JL, Wrong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128CrossRefPubMedGoogle Scholar
  72. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–663CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wu GA, Terol J, Ibanez V, Lopez-García A, Perez-Roman E, Borreda C, Domingo C, Tadeo FR, Carbonell-Caballero J, Alonso R, Curk F, Du D, Ollitrault P, Roose ML, Dopazo J, Gmitter FG, Rokhsar DS, Talon M (2018) Genomics of the origin and evolution of Citrus. Nature 544:311–316CrossRefGoogle Scholar
  74. Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66CrossRefPubMedGoogle Scholar
  75. Xu Q, Liu CY, Biswas MK, Pan ZY (2014) Recent advances in fruit crop genomics. Frontiers of Agricultural Science and Engineering 1:21–27CrossRefGoogle Scholar
  76. Yang JJ, Wang YY, Shen HL, Yang WC (2014) In Silico identification and experimental validation of insertion-deletion polymorphisms in tomato genome. DNA Res 21:429–438CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yeh FC, Boyle TJB (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian J Bot 129:157–163Google Scholar
  78. You FM, Huo NX, Gu YQ, Luo MC, Ma YQ, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer designing. BMC Bioinformatics 9:253CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yu HW, Yang XM, Guo F, Jiang XL, Deng XX, Xu Q (2017) Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China. Tree Genet Genomes 13:58–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qiuying Fang
    • 1
  • Lun Wang
    • 1
  • Huiwen Yu
    • 1
  • Yue Huang
    • 1
  • Xiaolin Jiang
    • 1
  • Xiuxin Deng
    • 1
  • Qiang Xu
    • 1
  1. 1.Key Laboratory of Horticultural Plant Biology of Ministry of EducationHuazhong Agricultural UniversityWuhanChina

Personalised recommendations