Plant Molecular Biology Reporter

, Volume 36, Issue 4, pp 564–575 | Cite as

Genetic Differentiation and Adaptability of Teak (Tectona grandis L.f.) Meta-Population in India

  • Vivek Vaishnav
  • Shamim Akhtar AnsariEmail author
Original Paper


The genetic differentiation of teak meta-population in India was investigated in relation to geographical and climatic variations employing dominant ISSR markers followed by Bayesian statistical analysis to understand adaptability of the species. The analysis based on 290 teak genotypes representing 29 locations of its natural distribution and 43 ISSR loci exhibited an insignificant structure and low 2.76% LD (≥ 0.1 R2 values, p < 0.001) in teak meta-population. The genetic and geographical variables despite acting independently with each other resulted in three sub-population clusters in the meta-population. The geographical barrier played a significant role in direction/restriction of gene flow. The integration of spatial/climatic variables altered the clustering pattern of the teak meta-population with signature of the adaptation to the temperature and longitudinal gradients that was also verified by the similar adaptation pattern of meta-population towards predicted global climate modeling for year 2050. The findings can help tackle the sustainable management and conservation of the species and its survival quotient in threat of changing climatic conditions.


Bayesian analysis Heterozygosity Inter simple sequence repeat (ISSR) Linkage disequilibrium (LD) Marker-geoclimatic association 



The present manuscript has used binary data (0,1) of five ISSR primers generated under the Research Project Grant (BT/PR/3000/AGR/16/236/ 2002) by Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, which is gratefully acknowledged.

Supplementary material

11105_2018_1101_MOESM1_ESM.jpg (230 kb)
ESM 1 (JPG 229 kb)
11105_2018_1101_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)
11105_2018_1101_MOESM3_ESM.jpg (81 kb)
ESM 3 (JPG 80 kb)
11105_2018_1101_MOESM4_ESM.docx (13 kb)
ESM 4 (DOCX 12 kb)
11105_2018_1101_MOESM5_ESM.docx (16 kb)
ESM 5 (DOCX 15 kb)
11105_2018_1101_MOESM6_ESM.jpg (1012 kb)
ESM 6 (JPG 1011 kb)


  1. Abdurakhmonov I, Saha S, Jenkins J, Buriev Z, Shermatov S, Scheffler B, Pepper A, Yu J, Kohel R, Abdukarimov A (2009) Linkage disequilibrium based association mapping of fiber quality traits in G hirsutum L variety germplasm. Genetica 136(3):401–417CrossRefPubMedGoogle Scholar
  2. Ansari SA, Narayanan C, Wali SA, Kumar R, Shukla N, Kumar SR (2012) ISSR markers for analysis of molecular diversity and genetic structure of Indian teak (Tectona grandis L f ) locations. Ann For Res 55(1):1–13Google Scholar
  3. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830CrossRefGoogle Scholar
  4. Bhat KM, Ma HO (2004) Teak growers unite. Trop For Update 14(1):3–5Google Scholar
  5. Blödner C, Skroppa T, Johnsen O, Polle A (2005) Freezing tolerance in two Norway spruce (Picea abies [L ] Karst) progenies is physiologically correlated with drought tolerance. J Plant Physiol 162:549–558CrossRefPubMedGoogle Scholar
  6. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16(18):3737–3758CrossRefPubMedGoogle Scholar
  7. Bower AD, Aitken SN (2008) Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am J Bot 95:66–76CrossRefPubMedGoogle Scholar
  8. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinform 23(19):2633–2635CrossRefGoogle Scholar
  9. Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinform 20:2363–2369CrossRefGoogle Scholar
  10. DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landscape Ecol Rep 1:115–126CrossRefGoogle Scholar
  11. Doyle JJ, Doyle JL (1990) Isolation of plant from fresh tissue. Focus 12:13–15Google Scholar
  12. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805CrossRefPubMedGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2621CrossRefGoogle Scholar
  14. Excoffier L, Lischer HEL (2010) ARLEQUIN suite ver 3 5: a new series of programs to perform population genetics analyses under LINUX and WINDOWS. Mol Ecol Notes 10:564–567CrossRefGoogle Scholar
  15. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fang D, Roose M (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–447CrossRefGoogle Scholar
  17. Fang JY, Chung JD, Chiang YC, Chang CT, Chen CY, Hwang SY (2013) Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var formosana (Pinaceae). PLoS One 8:e70162CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  19. Fofana I, Ofori D, Poitel M, Verhaegen D (2009) Diversity and genetic structure of teak (Tectona grandis Linn f) in its natural range using DNA microsatellite markers. New For 37:175–195CrossRefGoogle Scholar
  20. Foll M, Gaggiotti OA (2008) Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genet 180:977–993CrossRefGoogle Scholar
  21. Gangopadhyay G, Gangopadhyay SB, Poddar R (2003) Micropropagation of Tectona grandis: assessment of genetic fidelity. Biol Plant 46:459–461CrossRefGoogle Scholar
  22. Grativol C, da Fonseca Lira-Medeiros C, Hemerly AS, Ferreira PC (2011) High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L accessions. Mol Biol Rep 38(7):4245–4256CrossRefPubMedGoogle Scholar
  23. Hansen OK, Changtragoon S, Ponoy B, Kjær ED, Minn Y, Finkeldey R, Nielsen KB, Graudal L (2015) Genetic resources of teak (Tectona grandis Linn f)—strong genetic structure among natural populations. Tree Genet Genomes 11:802. CrossRefGoogle Scholar
  24. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  25. Holsinger KE (1999) Analysis of genetic diversity in geographically structured populations: a Bayesian perspective. Hereditas 130:245–255CrossRefGoogle Scholar
  26. Holsinger KE, Wallace LE (2004) Bayesian approach for analysis of population structure: an example from Planthanthera leucophaea (Orchidaceae). Mol Ecol 13:887–894CrossRefPubMedGoogle Scholar
  27. Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11:1157–1164CrossRefPubMedGoogle Scholar
  28. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kaosa-ard A (1989) Teak (Tectona grandis L f )—its natural distribution and related factors. Nat Hist Bull Siam Soc 29:55–74Google Scholar
  30. Katwal RPS (2005) Teak in India: status, prospects and perspectives. In: Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK (eds) Quality timber products of teak from sustainable forest management. Kerala Forest Research Institute, Peechi, pp 1–18Google Scholar
  31. Kertadikara AWS, Prat D (1995) Genetic structure and mating system in teak (Tectona grandis L f ) provenances. Silvae Genet 44:2–3Google Scholar
  32. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060. CrossRefPubMedGoogle Scholar
  33. Khanna LS (1984) Principles and practice of silviculture Khanna Bhandu, Dehra Dun, IndiaGoogle Scholar
  34. Kjaer ED, Siegismund HR, Suangtho V (1996) A multivariate study on genetic variation in teak (Tectona grandis Linn f) Silvae Genet 45: 361–368Google Scholar
  35. Liu K, Muse SV (2005) Integrated analysis environment for genetic marker data. Bioinform 21(9):2128–2129CrossRefGoogle Scholar
  36. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  37. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecol Evol 18: 189–197CrossRefGoogle Scholar
  38. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gilley L, Taberlet P (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738CrossRefPubMedPubMedCentralGoogle Scholar
  39. Minder AM, Widmer AA (2008) Population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 17:1552–1563CrossRefPubMedGoogle Scholar
  40. Miyashita NT, Kawabe A, Innan H (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152:1723–1731PubMedPubMedCentralGoogle Scholar
  41. Mort ME, Crawford D, Santos-Guerra A, Wolfe AD (2003) Relationships among the macaronesian members of tolpis (Asteraceae: Lactuceae) based upon analyses of inter simple sequence repeat (ISSR) markers. Taxon 52:511–518CrossRefGoogle Scholar
  42. Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok PY, Collins A (2001) The optimal measure of allelic association. Proc Natl Acad Sci U S A 98:5217–5221CrossRefPubMedPubMedCentralGoogle Scholar
  43. Naik PK, Alam MA, Singh H, Goyal V, Parida S, Kalia S, Mohapatra T (2010) Assessment of genetic diversity through RAPD, ISSR and AFLP markers in Podophyllum hexandrum: a medicinal herb from the northwestern Himalayan region. Physiol Mol Biol Plants 16:135–148CrossRefPubMedPubMedCentralGoogle Scholar
  44. Narayanan C, Wali SA, Shukla N, Kumar R, Mandal AK, Ansari SA (2007) RAPD and ISSR markers for molecular characterization of teak (Tectona grandis) plus trees. J Trop For Sci 19(4):218–225Google Scholar
  45. Nicodemus A, Nagarajan B, Narayanan C (2005) RAPD variation in Indian teak populations and its implications for breeding and conservation. In: Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK (eds) Quality timber products of teak from sustainable forest management. Kerala Forest Research Institute, Peechi, pp 321–330Google Scholar
  46. Nunney L (1999) The effective size of a hierarchically structured population. Evolution 53:1–10CrossRefPubMedGoogle Scholar
  47. Palupi ER, Owens JN (1998) Reproductive phenology and reproductive success of teak (Tectona grandis L. f.). Int J Plant Sci 159(5):833–842CrossRefGoogle Scholar
  48. Parthiban KT, Surendran C, Paramathma M, Sasikumar K (2005) Molecular characterization of teak seed sources using RAPDs. In: Bhat KM, Nair KKN, Bhat KV, Muralidharan EM, Sharma JK (eds) Quality timber products of teak from sustainable forest management. Kerala Forest Research Institute, Peechi, pp 331–337Google Scholar
  49. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  50. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinform 28:2537–2539CrossRefGoogle Scholar
  51. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  52. Plomion C, Bastien C, Bogeat-Triboulot ME, Bouer L, D_ejardin A, Duplessis S, Fady B, Heuertz M, Le Gac A, Provost GL et al (2016) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci 73:77–103CrossRefGoogle Scholar
  53. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  54. Pritchard JK, Stephens JK, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  55. Prunier J, Gérardi S, Laroche J, Beaulieu J, Bousquet J (2011) Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol Ecol 21:4270–4286CrossRefGoogle Scholar
  56. Ram S, Bagaonkar HP, Sikder AB (2011) Growth and climate relationship in teak trees from Conolly’s plot,South India. Curr Sci 100(5):630–633Google Scholar
  57. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484CrossRefPubMedGoogle Scholar
  58. Richardson BA, Rehfeldt GE, Kim MS (2009) Congruent climate-related gene ecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola). Int J Plant Sci 170:1120–1131CrossRefGoogle Scholar
  59. Sharma SS, Aadil K, Negi MS, Tripathi SB (2014) Efficacy of two dominant marker systems, ISSR and TE-AFLP for assessment of genetic diversity in biodiesel species Pongamia pinnata. Curr Sci 106:1576–1580Google Scholar
  60. Shrestha MK, Volkaert H, Van der Straeten D (2005) Assessment of genetic diversity in Tectonagrandis using amplified fragment length polymorphism markers. Can J For Res 35:1017–1022CrossRefGoogle Scholar
  61. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Nee) in the face of climate change. Mol Ecol 19:3806–3823CrossRefPubMedGoogle Scholar
  62. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9:901–911. CrossRefGoogle Scholar
  63. Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit. J Royal Stat Soc B 64:583–689CrossRefGoogle Scholar
  64. Sreekanth PM, Balasundaran M, Nazeem PA, Suma TB (2012) Genetic diversity of nine natural Tectona grandis L f populations of the Western Ghats in Southern India. Conserv Genet 13:1409–1419CrossRefGoogle Scholar
  65. Thorogood CJ, Rumsey FJ, Harris SA, Hiscock SJ (2008) Host-driven divergence in the parasitic plant Orobanche minor Sm (Orobanchaceae). Mol Ecol 17:4289–4303CrossRefPubMedGoogle Scholar
  66. Tiwari A, Kumar P, Chawhan PH, Singh S, Ansari SA (2006) Carbonic anhydrase in Tectona grandis: kinetics, stability, isozyme analysis and relationship with photosynthesis. Tree Physiol 26:1067–1079CrossRefPubMedGoogle Scholar
  67. Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T (2012) Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer Cryptomeria japonica. Heredity 109:349–360CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vaishnaw V, Mohammad N, Wali SA, Kumar R, Tripathi SB, Negi MS, Ansari SA (2015) AFLP markers for analysis of genetic diversity and structure of teak (Tectona grandis L f ) in India. Can J For Res 44:297–306CrossRefGoogle Scholar
  69. Verhaegen D, Fofana IJ, Logossa ZA, Ofori D (2010) What is the genetic origin of teak (Tectona grandis L ) introduced in Africa and Indonesia? Tree Genet Genomes 6:717–733CrossRefGoogle Scholar
  70. Wang J, Caballero A (1999) Developments in predicting the effective size of subdivided populations. Heredity 82:212–226CrossRefGoogle Scholar
  71. Wang T, Chen GP, Zan QJ, Wang CB, Su YJ (2012) AFLP genome scan to detect genetic structure and candidate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS One 7:e41310CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang T, Wang Z, Xia F, Su Y (2016) Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri, an endangered conifer endemic to China. Sci Rep 6.
  73. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedPubMedCentralGoogle Scholar
  74. Weir BS, Hill WG (1980) Effect of mating structure on variation in linkage disequilibrium. Genetics 95:447–488Google Scholar
  75. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 8:6531–6535CrossRefGoogle Scholar
  76. Wolfe AD, Xiang QY, Kephart SR (1998a) Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc Natl Acad Sci USA 95:52–55CrossRefGoogle Scholar
  77. Wolfe AD, Xiang QY, Kephart SR (1998b) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Mol Ecol 7:1107–1125CrossRefPubMedGoogle Scholar
  78. Wright S (1951) The genetical structure of populations. Ann Eugenics 15:323–354CrossRefGoogle Scholar
  79. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420CrossRefGoogle Scholar
  80. Wright S (1978) Evolution and the Genetics of Population, Vol 4 Variability within and among natural populations The University of Chicago Press, ChicagoGoogle Scholar
  81. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208CrossRefPubMedGoogle Scholar
  82. Zhang Y, Yan H, Jiang X, Wang X, Huang L, Xu B, Zhang X, Zhang L (2016) Genetic variation, population structure and linkage disequilibrium in switchgrass with ISSR, SCoT and EST-SSR markers. Heredity 153:4. CrossRefGoogle Scholar
  83. Zhao H, Nettleton D, Soller M, Dekkers JCM (2005) Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL. Genet Res 86:77–87CrossRefPubMedGoogle Scholar
  84. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefPubMedGoogle Scholar
  85. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Forest ProductivityRanchiIndia

Personalised recommendations