Advertisement

Plant Molecular Biology Reporter

, Volume 36, Issue 4, pp 553–563 | Cite as

The Sesuvium portulacastrum Plasma Membrane Na+/H+ Antiporter SpSOS1 Complemented the Salt Sensitivity of Transgenic Arabidopsis sos1 Mutant Plants

  • Yang Zhou
  • Xiaochang Yin
  • Shumin Wan
  • Yanping Hu
  • Qing Xie
  • Ruimei Li
  • Baibi Zhu
  • Shaoping Fu
  • Jianchun Guo
  • Xingyu Jiang
Original Paper
  • 49 Downloads

Abstract

The plasma membrane (PM) Na+/H+ antiporter SOS1 (salt overly sensitive 1) has emerged as a key factor in regulating plant salt tolerance. The SpSOS1 gene, which encodes a PM Na+/H+ antiporter, was cloned from the halophyte Sesuvium portulacastrum and transformed into Arabidopsis sos1 mutant plants. As shown from the results, the SpSOS1 expression complemented the salt sensitivity of the sos1 mutant plants. Upon salinity stress, SpSOS1-transgenic Arabidopsis sos1 mutant seeds displayed higher germination ratio compared to the sos1 mutant. The sos1 mutant plants expressing SpSOS1 grew better and had a lower Na+/K+ ratio than that of the sos1 mutant and wild-type (WT) plants when they were treated with NaCl. In addition, SpSOS1-overexpressed Arabidopsis accumulated less malondialdehyde (MDA) and had a lower level of electrolyte leakage than that in the sos1 mutant and WT plants under salt stress. Furthermore, the SpSOS1 expression in transgenic sos1 mutant plants also increased the transcript levels of some salt stress-related genes, such as AtHKT1;1 (high-affinity K+ transporter 1;1), AtSOS2 (salt overly sensitive 2), AtSCABP8 (SOS3-like calcium binding protein 8), and AtNHX1 (Na+/H+ exchanger 1). These results suggested that SpSOS1 improved the plant salt tolerance by regulating ion homeostasis and protecting the plasma membrane against oxidative damage under salt stress.

Keywords

Arabidopsis thaliana Na+/H+ antiporter Plasma membrane Salt tolerance Sesuvium portulacastrum 

Notes

Acknowledgements

We thank American Journal Experts (AJE) for the English language editing. This work was financially supported by the Natural Science Foundation of China (31660253, 31260218), the Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences (No. CATAS-1630052014004), and the Scientific and Technological Foundation of Hainan Province (HNGDhs201502).

Supplementary material

11105_2018_1099_MOESM1_ESM.doc (37 kb)
Table S1 Primer sequences of the salt stress-related genes used in this study. (DOC 37 kb)

References

  1. Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LP (2017) The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36:1009–1025.  https://doi.org/10.1007/s00299-017-2119-y CrossRefPubMedGoogle Scholar
  2. Abdelrahman M, Jogaiah S, Burritt DJ, Tran LP (2018) Legume genetic resources and transcripto apse me dynamics under abiotic stress conditions. Plant Cell Environ.  https://doi.org/10.1111/pce.13123
  3. Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345.  https://doi.org/10.1590/1678-4685-GMB-2016-0106 CrossRefPubMedPubMedCentralGoogle Scholar
  4. An J, Song AP, Guan ZY, Jiang JF, Chen FD, Lou WH, Fang WM, Liu ZL, Chen SM (2014) The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Mol Biol Rep 41:4155–4162.  https://doi.org/10.1007/s11033-014-3287-2 CrossRefPubMedGoogle Scholar
  5. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258.  https://doi.org/10.1126/science.285.5431.1256 CrossRefPubMedGoogle Scholar
  6. Barragan V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142.  https://doi.org/10.1105/tpc.111.095273 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030.  https://doi.org/10.1104/pp.126.3.1024 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206:557–570.  https://doi.org/10.1111/nph.13217 CrossRefPubMedGoogle Scholar
  9. Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91.  https://doi.org/10.1093/jxb/32.1.79 CrossRefGoogle Scholar
  10. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431.  https://doi.org/10.1016/0076-6879(90)86135-I CrossRefPubMedPubMedCentralGoogle Scholar
  11. Duggleby RG, Dennis DT (1973) Pyruvate kinase, a possible regulatory enzyme in higher plants. Plant Physiol 52:312–317.  https://doi.org/10.1104/pp.52.4.312 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Feki K, Quintero FJ, Pardo JM, Masmoudi K (2011) Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol Biol 76:545–556.  https://doi.org/10.1007/s11103-011-9787-8 CrossRefPubMedGoogle Scholar
  13. Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288.  https://doi.org/10.1007/s00299-013-1528-9 CrossRefPubMedGoogle Scholar
  14. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963.  https://doi.org/10.1111/j.1469-8137.2008.02531.x CrossRefPubMedGoogle Scholar
  15. Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodriguez-Navarro A, Benito B (2010) The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta. New Phytol 188:750–761.  https://doi.org/10.1111/j.1469-8137.2010.03405.x CrossRefPubMedGoogle Scholar
  16. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499.  https://doi.org/10.1146/annurev.arplant.51.1.463 CrossRefPubMedGoogle Scholar
  17. Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103:18816–18821.  https://doi.org/10.1073/pnas.0604711103 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li Q, Tang Z, Hu Y, Yu L, Liu Z, Xu G (2014) Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Mol Biol Rep 41:5097–5108.  https://doi.org/10.1007/s11033-014-3375-3 CrossRefPubMedGoogle Scholar
  19. Liu J, Zhu JK (1998) A calcium sensor homolgo required for plant salt tolerance. Science 280:1943–1945.  https://doi.org/10.1126/science.280.5371.1943 CrossRefPubMedGoogle Scholar
  20. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734.  https://doi.org/10.1073/pnas.060034197 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25.  https://doi.org/10.1007/s11240-010-9699-3 CrossRefGoogle Scholar
  22. Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398.  https://doi.org/10.1006/anbo.1996.0134 CrossRefGoogle Scholar
  23. Ma DM, Xu WR, Li HW, Jin FX, Guo LN, Wang J (2014) Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arudinacea Schreb.). Protoplasma 251:219–231.  https://doi.org/10.1007/s00709-013-0540-9 CrossRefPubMedGoogle Scholar
  24. Martinez-Atienza J, Jiang XY, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012.  https://doi.org/10.1104/pp.106.092635 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Munns R (2005) Genes and sat tolerance: bringing them together. New Phytol 167:645–663.  https://doi.org/10.1111/j.1469-8137.2005.01487.x CrossRefPubMedGoogle Scholar
  26. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  27. Nawaz I, Iqbl M, Hakvoort HWJ, Bliek M, de Boer B, Schat H (2014) Expression levels and promoter activities of candidate salt tolerance genes in halophyte and glycophytic Brassicaceae. Environ Exp Bot 99:59–66.  https://doi.org/10.1016/j.envexpbot.2013.10.006 CrossRefGoogle Scholar
  28. Nie W, Xu L, Yu B (2015) A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. Protoplasma 252:127–134.  https://doi.org/10.1007/s00709-014-0663-7 CrossRefPubMedGoogle Scholar
  29. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang XY, DUrzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 15:210–222.  https://doi.org/10.1104/pp.109.137802 CrossRefGoogle Scholar
  30. Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213.  https://doi.org/10.1093/jxb/erp391 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Olias R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916.  https://doi.org/10.1111/j.1365-3040.2009.01971.x CrossRefPubMedGoogle Scholar
  32. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199.  https://doi.org/10.1093/jxb/erj114 CrossRefPubMedGoogle Scholar
  33. Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Zhang H (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57:1069–1084.  https://doi.org/10.1093/pcp/pcw055 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555.  https://doi.org/10.1104/pp.104.049213 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441.  https://doi.org/10.1073/pnas.122224699 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207–215.  https://doi.org/10.1074/jbc.M307982200 CrossRefPubMedGoogle Scholar
  37. Quan R, Lin HX, Mendoza I, Zhang YG, Cao WH, Yang YQ, Shang M, Chen SY, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431.  https://doi.org/10.1105/tpc.106.042291 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang XY, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter SOS1 by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611–2616.  https://doi.org/10.1073/pnas.1018921108 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828.  https://doi.org/10.1016/j.biortech.2010.03.097 CrossRefPubMedGoogle Scholar
  40. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155.  https://doi.org/10.1073/pnas.241501798 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shi HZ, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901.  https://doi.org/10.1073/pnas.120170197 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477.  https://doi.org/10.1105/tpc.010371 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Slama I, Ghnaya T, Savoure A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. CR Biol 331:442–451.  https://doi.org/10.1016/j.crvi.2008.03.006 CrossRefGoogle Scholar
  44. Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380.  https://doi.org/10.1007/s11103-010-9680-x CrossRefPubMedGoogle Scholar
  45. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527.  https://doi.org/10.1093/aob/mcg058 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamurs T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediateds inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccaromyces cerevisiae. Plant Physiol 122:1249–1259.  https://doi.org/10.1104/pp.122.4.1249 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4813–4822.  https://doi.org/10.1007/s11033-010-0624-y CrossRefPubMedGoogle Scholar
  48. Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627.  https://doi.org/10.1105/tpc.8.4.617 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu HX, Jiang XY, Zhan KH, Cheng XY, Chen XJ, Pardo JM, Cui DQ (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473:8–15.  https://doi.org/10.1016/j.abb.2008.02.018 CrossRefPubMedGoogle Scholar
  50. Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188.  https://doi.org/10.1186/1471-2229-12-188 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yi XP, Sun Y, Yang Q, Guo AP, Chang L, Wang D, Tong Z, Jin X, Wang LM, Yu JL, Jin W, Xie Y, Wang XC (2014) Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. J Proteome 99:84–100.  https://doi.org/10.1016/j.jprot.2014.01.017 CrossRefGoogle Scholar
  52. Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22.  https://doi.org/10.1007/s11120-013-9813-6 CrossRefPubMedGoogle Scholar
  53. Zhou Y, Yin XC, Duan RJ, Hao GP, Guo JC, Jiang XY (2015) SpAHA1 and SpSOS1 coordinate in transgenic yeast to improve salt tolerance. PLoS One 10:e0137447.  https://doi.org/10.1371/journal.pone.0137447 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhou Y, Lai Z, Yin XC, Yu S, Xu YY, Wang XX, Cong X, Luo YH, Xu HX, Jiang XY (2016) Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco. Plant Sci 253:176–186.  https://doi.org/10.1016/j.plantsci.2016.09.016 CrossRefPubMedGoogle Scholar
  55. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445.  https://doi.org/10.1016/S1369-5266(03)00085-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yang Zhou
    • 1
    • 2
  • Xiaochang Yin
    • 2
  • Shumin Wan
    • 2
  • Yanping Hu
    • 3
  • Qing Xie
    • 2
  • Ruimei Li
    • 1
  • Baibi Zhu
    • 3
  • Shaoping Fu
    • 1
  • Jianchun Guo
    • 1
  • Xingyu Jiang
    • 2
  1. 1.Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of AgricultureHaikouChina
  2. 2.Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Agriculture and ForestryHainan UniversityHaikouChina
  3. 3.The Institute of VegetablesHainan Academy of Agricultural SciencesHaikouChina

Personalised recommendations