Advertisement

Plant Molecular Biology Reporter

, Volume 36, Issue 4, pp 576–587 | Cite as

Variance, Inter-Trait Correlation, Heritability, and Marker-Trait Association of Rubber Yield-Related Characteristics in Taraxacum kok-saghyz

  • Zinan Luo
  • Brian J. Iaffaldano
  • Xiaofeng Zhuang
  • Jonathan Fresnedo-Ramírez
  • Katrina Cornish
Original Paper
  • 74 Downloads

Abstract

Rubber dandelion (Taraxacum kok-saghyz or TK) is a potential industrial crop species that can produce high-quality natural rubber in its roots. The present study estimated trait variance, inter-trait correlation, and entry-mean heritability for rubber yield-related traits and analyzed associations between these traits and 42 single-nucleotide polymorphism (SNP) markers. A trial was conducted at three environments to assess a biparental progeny of 66 F1 full-sibs, in a randomized complete block design (RCBD) with two replicates. Significant correlations, broad ranges of variation, and significant genotypic variance components were identified for five measured phenotypic traits. Moderate broad-sense heritability on an entry-mean heritability estimates (0.51–0.61) were obtained for five rubber yield-related traits based on a 1-year trial. However, the broad-sense heritability in general sense ranged from 0.09 to 0.15 depending on the trait. Two linkage groups were identified. Association analysis identified seven significant marker-trait gene associations, and only one marker was related to two traits. The implications of trait correlations and heritability for selection and improvement are discussed.

Keywords

Heritability Inter-trait correlation Genotypic variance Phenotypic variance KASP Linkage group Marker-trait association analysis 

Notes

Acknowledgements

This work was supported by the Center for Applied Plant Sciences (CAPS), the College of Food Agricultural and Environmental Sciences, The Ohio State University, and USDA National Institute of Food and Agriculture (Hatch project 230837). We are also grateful for the funding from the OARDC SEEDS grant program. This research is part of the requirements for the Ph.D. project for Zinan Luo at The Ohio State University. We also thank Sarah K. McNulty and Niki Amstutz for taking care of the plants.

Supplementary material

11105_2018_1097_MOESM1_ESM.xlsx (28 kb)
ESM 1 (XLSX 27 kb)

References

  1. Alva JAV, Estrada EG (2009) A generalization of Shapiro-Wilk’s test for multivariate normality. Commun Stat Theory Methods 38(11):1870–1883CrossRefGoogle Scholar
  2. Arias M, Hernandez M, Remondegui N, Huvenaars K, van Dijk P, Ritter E (2016) First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers. Sci Rep 6:31031CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates D et al (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  4. Bernal-Vasquez AM, Gordillo A, Schmidt M, Piepho HP (2017) Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program. BMC Genet 18(1):51CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127(5):1073–1090PubMedGoogle Scholar
  6. Bowers JE, Nambeesan S, Corbi J, Barker MS, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of an ultra-dense genetic map of the sunflower genome based on single-feature polymorphisms. PLoS One 7(12):e51360CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cassell B (2009) Using heritability for genetic improvement. VCE 404(084):1–4Google Scholar
  8. Cockerham CC, Zeng ZB (1996) Design III with marker loci. Genetics 143(3):1437–1456PubMedPubMedCentralGoogle Scholar
  9. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363(1491):557–572CrossRefGoogle Scholar
  10. Cornish K (2001) Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species (1963 to 2000). Nat Prod Rep 18(2):182–189CrossRefPubMedGoogle Scholar
  11. Cornish K (2017) Alternative natural rubber crops: why should we care? Technol Innov 18:245–256CrossRefGoogle Scholar
  12. Cornish K, Myers MD, Kelley SS (2004) Latex quantification in homogenate and purified samples using near infrared spectroscopy. Ind Crop Prod 19:283–296Google Scholar
  13. Cornish K, Xie W, Kostyal D, Shintani D, Hamilton RG (2015) Immunological analysis of the alternate rubber crop Taraxacum koksaghyz indicates multiple proteins cross-reactive with Hevea brasiliensis latex allergens. J Biotechnol Biomater 5(4):201–207CrossRefGoogle Scholar
  14. Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32CrossRefPubMedGoogle Scholar
  15. Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJ, Kruisselbrink JW, Longhi S et al (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res 3:16057CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dierig DA, Ray DT, Coffelt TA, Nakayama FS, Leake GS, Lorenz G (2001) Heritability of height, width, resin, rubber, and latex in guayule (Parthenium argentatum). Ind Crop Prod 13(3):229–238CrossRefGoogle Scholar
  17. Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52(11–12):1349–1356CrossRefGoogle Scholar
  18. Filippi CV, Aguirre N, Rivas JG, Zubrzycki J, Puebla A, Cordes D, Moreno MV, Fusari CM, Alvarez D, Heinz RA, Hopp HE, Paniego NB, Lia VV (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:52CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goncalves PDS, Silva MD, Gouvea LRL, Scaloppi EJ (2006) Genetic variability for girth growth and rubber yield in Hevea brasiliensis. Sci Agric 63(3):246–254CrossRefGoogle Scholar
  20. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106(7):1213–1224CrossRefPubMedGoogle Scholar
  22. Harushima Y, Yano M, Shomura P, Sato M, Shimano T, Kuboki Y et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494PubMedPubMedCentralGoogle Scholar
  23. Jonah PM, Bello LL, Lucky O, Midau A, Moruppa S (2011) Review: the importance of molecular markers in plant breeding programs. GJSFR 11(5):5–12Google Scholar
  24. Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479PubMedPubMedCentralGoogle Scholar
  25. Kelly JD, Miklas PN (1998) The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed 4(1):1–11CrossRefGoogle Scholar
  26. Koebner RMD, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21(2):59–63CrossRefPubMedGoogle Scholar
  27. Kwon SJ, Truco MJ, Hu J (2012) LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting. Mol Breed 29:887–901CrossRefGoogle Scholar
  28. Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100(11):6866–6871CrossRefPubMedPubMedCentralGoogle Scholar
  29. Leonards-Schippers C, Gieffers W, Schiifer-Pregl R, Ritter E, Knapp SJ, Salamini F et al (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77PubMedPubMedCentralGoogle Scholar
  30. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98(1):31–36CrossRefPubMedGoogle Scholar
  31. Lim JH, Yang HJ, Jung KH, Yoo SC, Paek NC (2014) Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol Cells 37(2):149–160CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23(2):60–66CrossRefPubMedGoogle Scholar
  33. Luo ZN et al (2017) Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Sci Rep 7:9939CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mackill DJ, Nguyen HT, Zhang JX (1999) Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crops Res 64(1–2):177–185CrossRefGoogle Scholar
  35. Majekova, M., Paal, T., Plowman, N. S., Bryndova, M., Kasari, L., & Norberg, A. (2016). Evaluating functional diversity: missing trait data and the importance of species abundance Structure and data transformation. PLoS ONE 11(3)CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maliepaar C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  37. Maughan PJ, Maroof MAS, Buss GR (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol Breed 6(1):105–111CrossRefGoogle Scholar
  38. Moncada MDP, Tovar E, Montoya JC, González A, Spindel J, McCouch S (2015) A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height, and bean size. Tree Genet Genomes 12(1):5CrossRefGoogle Scholar
  39. Piepho HP, Mohring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177(3):1881–1888CrossRefPubMedPubMedCentralGoogle Scholar
  40. Post J, van Deenen N, Fricke J, Kowalski N, Wurbs D, Schaller H, Eisenreich W, Huber C, Twyman RM, Prufer D, Gronover CS (2012) Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum. Plant Physiol 158(3):1406–1417CrossRefPubMedPubMedCentralGoogle Scholar
  41. R Development Core Team (2011) R: A Language and Environment for Statistics Computing. R Foundation for Statistical Computing, Vienna, Austria Retrieved from http://www.R-project.org Google Scholar
  42. Schmetterer, L. (1964). Contributions to probability and statistics - essays in honor of Hotelling, Harold-Olkin, J, Ghurye, S, Hoeffding, W, Madow, W, Mann, H Econometrica, 32(4) 721–721CrossRefGoogle Scholar
  43. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–14CrossRefGoogle Scholar
  44. Sonah H, O'Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotech J 13(2):211–221CrossRefGoogle Scholar
  45. Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package - Joinmap. Plant J 3(5):739–744CrossRefGoogle Scholar
  46. Staub JE et al (1996) Genetic markers, map construction, and their application in plant breeding. HortSci 31(5):729–741Google Scholar
  47. Suchat, S., Pioch, D., Palu, S., Tardan, E., van Loo, E. N., & Davrieux, F. (2013). Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy. Ind Crop Prod, 45, 44–51CrossRefGoogle Scholar
  48. Syed NH, Chen ZJ (2005) Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity (Edinb) 94(3):295–304CrossRefGoogle Scholar
  49. Tabangin ME, Woo JG, Martin LJ (2009) The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc 3(Suppl 7):S41CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tanaka Y (1989) Structure and biosynthesis mechanism of natural polyisoprene. Prog Polym Sci 14:339–371CrossRefGoogle Scholar
  51. Thomas WTB (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142(1):1–12CrossRefGoogle Scholar
  52. Truco MJ, Ashrafi H, Kozik A, van Leeuwen H, Bowers J, Wo SR, Stoffel K, Xu H, Hill T, van Deynze A, Michelmore RW (2013) An ultra-high-density, transcript-based. Genetic Map of Lettuce. G3 3(4):617–631Google Scholar
  53. Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255(1):35–54CrossRefGoogle Scholar
  54. Utz HF, Laidig F (1989) Genetic and environmental variability of yields in the official FRG variety performance tests. Biuletyn Ocemy Odmian 21-22:75–85Google Scholar
  55. van Beilen JB, Poirier Y (2007) Guayule and Russian dandelion as alternative sources of natural rubber. Crit Rev Biotechnol 27(4):217–231CrossRefPubMedGoogle Scholar
  56. Van den Ende W, Michiels A, De Roover J, Van Laere A (2002) Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. Sci World J 2:1281–1295CrossRefGoogle Scholar
  57. van Dijk P, Kirschner J, Štěpánek J, Baitulin IO, Cěrny T (2010) Taraxacum kok-saghyz Rodin definitely is not an example of overcollecting in the past. J Appl Bot Food Qual 83:217–219Google Scholar
  58. Venkatachalam P et al (2013) Natural rubber producing plants. Afr J Biotechnol 12(12):1297–1310Google Scholar
  59. Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep 5:17512CrossRefPubMedPubMedCentralGoogle Scholar
  60. Whaley WG, Bowen JS (1947) Russian dandelion (kok-saghyz) an emergency source of natural rubber. United States Government Printing Office, Washington D. C, p 618Google Scholar
  61. Williams KJ (2003) The molecular genetics of disease resistance in barley. Aust J Agric Res 54(11–12):1065–1079CrossRefGoogle Scholar
  62. Wu R, Ma CX, Painter I, Zeng ZB (2002) Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol 61(3):349–363CrossRefPubMedGoogle Scholar
  63. Xiao JH et al (1995) Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140(2):745–754PubMedPubMedCentralGoogle Scholar
  64. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106(1):9–18CrossRefPubMedGoogle Scholar
  65. Zhang L, Li H, Wang J (2015) Linkage analysis and map construction in genetic populations of clonal F1 and double cross. G3 5(3):427–439CrossRefPubMedGoogle Scholar
  66. Zhang Y, Iaffaldano BJ, Zhuang X, Cardina J, Cornish K (2017) Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biol 17(1):34CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterUSA

Personalised recommendations