Advertisement

Accumulation and partitioning of rare earth elements in olive trees and extra virgin olive oil from Adriatic coastal region

  • Filip PošćićEmail author
  • Mirella Žanetić
  • Željka Fiket
  • Martina Furdek Turk
  • Nevenka Mikac
  • Niko Bačić
  • Mavro Lučić
  • Marija Romić
  • Helena Bakić
  • Maja Jukić Špika
  • Branimir Urlić
  • Marko Runjić
  • Gabriela Vuletin Selak
  • Elda Vitanović
  • Tatjana Klepo
  • Jakša Rošin
  • Zed Rengel
  • Slavko Perica
Regular Article

Abstract

Aims

A potential of rare earth elements (including yttrium) (REY) accumulation in olives is increasing due to enhanced use of REY in human activities. REY transfer to extra virgin olive oil (EVOO) is little studied, and characterising the relationships between soil properties and REY concentrations in olive leaves, pomace and EVOO can enhance our understanding of soil-plant interactions.

Methods

Three different soil types (reclaimed karst, rendzina and cambisols), with the sum of REY concentrations (54–364 μg g−1) among the highest in European soils, were characterized for their pH, organic carbon, total carbonates and the applied agronomic practice. Aluminium, calcium, iron, phosphorus and REY were determined in soil (total and plant-available), olive leaves, pomace and EVOO.

Results

REY were mainly excluded from plant uptake and only small amounts of REY were transferred to leaves (0.2–652 ng g−1), pomace (0.001–10 ng g−1) and EVOO (<0.5–33 pg g−1). Soil REY availability (0.001–1685 ng g−1) and plant uptake increased with increasing soil acidity. Leaf REY concentrations were mainly explained by plant-available REY and pH. There was an indication of enhanced REY plant availability being associated with low available phosphorus and soil ploughing.

Conclusions

Soil properties influence REY uptake and further partitioning to leaves, fruits and EVOO.

Keywords

Cambisols Olive leaf Pomace Reclaimed karst Rendzina Terra rossa 

Notes

Acknowledgments

We thank Anton Paar GmbH for providing a Multiwave GO microwave oven. The authors would like to thank Tomislav Sotinac, Frane Strikić, Blanka Anđelić and Silvia Milišić for their valuable help. We are grateful to Hélène Frérot-Pauwels for her prereview of the manuscript.

Funding information

This work was supported by the Unity through Knowledge Fund [“Role of soil properties and environmental conditions in elemental and isotopic composition of the olive: basis for oil geographic traceability”, no 23/15].

Supplementary material

11104_2019_4418_MOESM1_ESM.docx (89 kb)
ESM 1 (DOCX 89.4 kb)

References

  1. Aceto M, Calà E, Musso D, Regalli N, Oddone M (2019) A preliminary study on the authentication and traceability of extra virgin olive oil made from Taggiasca olives by means of trace and ultra-trace elements distribution. Food Chem 298:125047.  https://doi.org/10.1016/j.foodchem.2019.125047 CrossRefPubMedGoogle Scholar
  2. Agbede TM (2010) Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil Tillage Res 110:25–32.  https://doi.org/10.1016/j.still.2010.06.003 CrossRefGoogle Scholar
  3. Agnan Y, Séjalon-Delmas N, Probst A (2014) Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Sci Total Environ 487:1–12.  https://doi.org/10.1016/j.scitotenv.2014.03.132 CrossRefPubMedGoogle Scholar
  4. Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111.  https://doi.org/10.1023/A:1014995321560 CrossRefGoogle Scholar
  5. Anderson MJ, Legendre P (1999) An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul 62:271–303.  https://doi.org/10.1080/00949659908811936 CrossRefGoogle Scholar
  6. Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654.  https://doi.org/10.1080/01904168109362867 CrossRefGoogle Scholar
  7. Bau M, Schmidt K, Pack A, Bendel V, Kraemer D (2018) The European shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl Geochem 90:142–149.  https://doi.org/10.1016/j.apgeochem.2018.01.008 CrossRefGoogle Scholar
  8. Beltrán M, Sánchez-Astudillo M, Aparicio R, García-González DL (2015) Geographical traceability of virgin olive oils from South-Western Spain by their multi-elemental composition. Food Chem 169:350–357.  https://doi.org/10.1016/j.foodchem.2014.07.104 CrossRefPubMedGoogle Scholar
  9. Benincasa C, Lewis J, Perri E, Sindona G, Tagarelli A (2007) Determination of trace elements in Italian virgin olive oils and their characterization according to geographical origin by statistical analysis. Anal Chim Acta 58:366–370.  https://doi.org/10.1016/j.aca.2006.12.040 CrossRefGoogle Scholar
  10. Brioschi L, Steinmann M, Lucot E, Pierret MC, Stille P, Prunier J, Badot PM (2013) Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant Soil 366:143–163.  https://doi.org/10.1007/s11104-012-1407-0 CrossRefGoogle Scholar
  11. Camin F, Larcher R, Nicolini G, Bontempo L, Bertoldi D, Perini M, Schlicht C, Schellenberg A, Thomas F, Heinrich K, Voerkelius S, Horacek M, Ueckermann H, Froeschl H, Wimmer B, Heiss G, Baxter M, Rossmann A, Hoogewerff J (2010a) Isotopic and elemental data for tracing the origin of European olive oils. J Agric Food Chem 58:570–577.  https://doi.org/10.1021/jf902814s CrossRefPubMedGoogle Scholar
  12. Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G (2010b) Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem 118:901–909.  https://doi.org/10.1016/j.foodchem.2008.04.059 CrossRefGoogle Scholar
  13. Chen J, Yang R (2010) Analysis on REE geochemical characteristics of three types of REE-rich soil in Guizhou Province, China. J Rare Earths 28:517–522.  https://doi.org/10.1016/S1002-0721(10)60271-2 CrossRefGoogle Scholar
  14. Diatloff E, Asher CJ, Smith FW (1993) Use of Geochem-PC to predict rare-earth element (REE) species in nutrient solutions. Plant Soil 156:251–254.  https://doi.org/10.1007/BF00025031 CrossRefGoogle Scholar
  15. Farmaki EG, Thomaidis NS, Minioti KS, Ioannou E, Georgiou CA, Efstathiou CE (2012) Geographical characterization of Greek olive oils using rare earth elements content and supervised chemometric techniques. Anal Lett 45:920–932.  https://doi.org/10.1080/00032719.2012.655656 CrossRefGoogle Scholar
  16. Fedele L, Plant JA, De Vivo B, Lima A (2008) The rare element distribution map over Europe: geogenic and anthropogenic sources. Geochem-Explor Environ Anal 8:3–18.  https://doi.org/10.1144/1467-7873/07-150 CrossRefGoogle Scholar
  17. Fiket Ž, Mikac N, Kniewald G (2017a) Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand Geoanal Res 41:123–135.  https://doi.org/10.1111/ggr.12129 CrossRefGoogle Scholar
  18. Fiket Ž, Medunić G, Furdek Turk M, Ivanić M, Kniewald G (2017b) Influence of soil characteristics on rare earth fingerprints in mosses and mushrooms: example of a pristine temperate rainforest (Slavonia, Croatia). Chemosphere 179:92–100.  https://doi.org/10.1016/j.chemosphere.2017.03.089 CrossRefPubMedGoogle Scholar
  19. Fiket Ž, Medunić G, Furdek Turk M, Kniewald G (2018) Rare earth elements in superhigh-organic-sulfur Raša coal ash (Croatia). Int J Coal Geol 194:1–10.  https://doi.org/10.1016/j.coal.2018.05.002 CrossRefGoogle Scholar
  20. Freitas MC, De Corte F, Gouveia MA, Prudêncio MI, Cabral JMP (1993) Determination of the REE in environmental samples near a coal power station based on k0-standardized NAA with counting in a LEPD. J Radioanal Nucl Ch 169:219–228.  https://doi.org/10.1007/BF02046796 CrossRefGoogle Scholar
  21. Gambogi J (2016) Rare earths. In: U.S. Geological Survey 2013. Minerals Yearbook 60:1–17 Available at https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/#pubs. Accessed 4 Jan 2019Google Scholar
  22. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338.  https://doi.org/10.1093/biomet/53.3-4.325 CrossRefGoogle Scholar
  23. Haxel GB, Hedrick JB, Orris GJ (2002) Rare earth elements: critical resources for high technology. In US Geological Survey Fact Sheet 087–02. Available at http://pubs.usgs.gov/fs/2002/fs087-02/. Accessed 4 Jan 2019
  24. Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén hg-mining district. J Geochem Explor 123:143–151.  https://doi.org/10.1016/j.gexplo.2012.04.012 CrossRefGoogle Scholar
  25. HRN EN ISO (2004a) Animal and vegetable fats and oils - determination of acid value and acidity. HRN EN ISO, 660. Croatian Standards Institute, ZagrebGoogle Scholar
  26. HRN EN ISO (2004b). Spectrophotometric investigation in the ultraviolet. HRN EN ISO, 3656. Croatian Standards Institute, ZagrebGoogle Scholar
  27. HRN EN ISO (2010) Animal and vegetable fats and oils - Determination of peroxide value - Iodometric (visual) endpoint determination. HRN EN ISO, 3960. Croatian Standards Institute, ZagrebGoogle Scholar
  28. HRN ISO (2004a) Soil quality - Pretreatment of samples for physico-chemical analysis. HRN ISO, 11464. Croatian Standards Institute, ZagrebGoogle Scholar
  29. HRN ISO (2004b) Soil quality - Determination of pH. HRN ISO, 10390. Croatian Standards Institute, ZagrebGoogle Scholar
  30. HRN ISO (2004c) Soil quality - Determination of carbonate content - Volumetric method. HRN ISO, 10693. Croatian Standards Institute, ZagrebGoogle Scholar
  31. HRN ISO (2004d) Soil quality–Determination of organic carbon by sulfochromic oxidation. HRN ISO, 14235. Croatian Standards Institute, ZagrebGoogle Scholar
  32. Hu Z, Richter H, Sparovek G, Schung E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220.  https://doi.org/10.1081/PLN-120027555 CrossRefGoogle Scholar
  33. ISO (2008) Soil quality - Extraction of trace elements from soil using ammonium nitrate solution. ISO, 19730. International Organization for Standardization, GenevaGoogle Scholar
  34. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  35. Jukić Špika M, Kraljić K, Koprivnjak O, Škevin D, Žanetić M, Katalinić M (2015) Effect of agronomical factors and storage conditions on the tocopherol content of Oblica and Leccino virgin olive oils. J Am Oil Chem Soc 92:1293–1301.  https://doi.org/10.1007/s11746-015-2688-2 CrossRefGoogle Scholar
  36. Kovaříková M, Tomášková I, Soudek P (2019) Rare earth elements in plants. Biol Plant 63:20–32.  https://doi.org/10.32615/bp.2019.003 CrossRefGoogle Scholar
  37. Lavado RS, Porcelli CA, Alvarez R (2001) Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the argentine pampas. Soil Tillage Res 62:55–60.  https://doi.org/10.1016/S0167-1987(01)00216-1 CrossRefGoogle Scholar
  38. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO, 1st edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  39. Liang T, Ding SM, Song WC, Chong ZY, Zhang CS, Li HT (2008) A review of fractionations of rare earth elements in plant. J Rare Earths 26:7–15.  https://doi.org/10.1016/S1002-0721(08)60027-7 CrossRefGoogle Scholar
  40. Llorent-Martínez EJ, Fernández-de Córdova ML, Ortega-Barrales P, Ruiz-Medina A (2014) Quantitation of metals during the extraction of virgin olive oil from olives using ICP-MS after microwave-assisted acid digestion. J Am Oil Chem Soc 91:1823–1830.  https://doi.org/10.1007/s11746-014-2511-5 CrossRefGoogle Scholar
  41. Loell M, Albrecht C, Felix-Henningsen P (2011a) Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany). Plant Soil 349:303–317.  https://doi.org/10.1007/s11104-011-0875-y CrossRefGoogle Scholar
  42. Loell M, Reiher W, Felix-Henningsen P (2011b) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutr Soil Sc 174:644–654.  https://doi.org/10.1002/jpln.201000265 CrossRefGoogle Scholar
  43. Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  44. Martinez RE, Pourret O, Faucon M-P, Dian C (2018) Effect of rare earth elements on rice plant growth. Chem Geol 489:28–37.  https://doi.org/10.1016/j.chemgeo.2018.05.012 CrossRefGoogle Scholar
  45. McLennan SM, Taylor SR (2012) Geology, geochemistry, and natural abundances of the rare earth elements. In Encyclopedia of inorganic and bioinorganic chemistry. John Wiley and Sons, Ltd, Hoboken, pp 1–19Google Scholar
  46. Migaszewski ZM, Gałuszka A (2015) The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review. Crit Rev Environ Sci Technol 45:429–471.  https://doi.org/10.1080/10643389.2013.866622 CrossRefGoogle Scholar
  47. O’Neill HSC (2016) The smoothness and shapes of Chondrite-normalized rare earth element patterns in basalts. J Petrol 57:1463–1508.  https://doi.org/10.1093/petrology/egw047 CrossRefGoogle Scholar
  48. Perica S (2001) Seasonal fluctuation and intracanopy variation in leaf nitrogen level in olive. J Plant Nutr 24:779–787.  https://doi.org/10.1081/PLN-100103670 CrossRefGoogle Scholar
  49. Podani (2000) Introduction to the exploration of multivariate biological data. Backhuys Publishing, LeidenGoogle Scholar
  50. Pošćić F, Schat H, Marchiol L (2017) Cerium negatively impacts the nutritional status in rapeseed. Sci Total Environ 593-594:735–744.  https://doi.org/10.1016/j.scitotenv.2017.03.215 CrossRefPubMedGoogle Scholar
  51. Pošćić F, Runjić M, Jukić Špika M, Mikac N, Rengel Z, Romić M, Urlić B, Bačić N, Lučić M, Bakić H, Fiket Ž, Strikić F, Klepo T, Perica S (2018) Nutrient deficiencies in olives grown on typical Mediterranean soils (Terra rossa, Rendzina, Lithosol). Arch Agron Soil Sci 64:1777–1790.  https://doi.org/10.1080/03650340.2018.1457785 CrossRefGoogle Scholar
  52. Pošćić F, Furdek Turk M, Bačić N, Mikac N, Bertoldi D, Camin F, Jukić Špika M, Žanetić M, Rengel Z, Perica S (2019) Removal of pomace residues is critical in quantification of element concentrations in extra virgin olive oil. J Food Compos Anal 77:39–46.  https://doi.org/10.1016/j.jfca.2019.01.002 CrossRefGoogle Scholar
  53. Punturo R, D’Antone C, Pepi S, Vaccaro C (2018) Rare earth elements absorption patterns in grapevine “Vitis vinifera L.” cultivated in carbonate terrains (south-eastern Sicily, Italy). Environ Earth Sci 77:801.  https://doi.org/10.1007/s12665-018-7989-y CrossRefGoogle Scholar
  54. Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, Guilherme LRG (2016) Rare earth elements in the soil environment. Curr Pollution Rep 2:28–50.  https://doi.org/10.1007/s40726-016-0026-4 CrossRefGoogle Scholar
  55. Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O'Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, EspooGoogle Scholar
  56. Sayago A, González-Domínguez R, Beltrán R, Fernández-Recamales Á (2018) Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition. Food Chem 261:42–50.  https://doi.org/10.1016/j.foodchem.2018.04.019 CrossRefPubMedGoogle Scholar
  57. Shabani MB, Akagi T, Masuda A (1992) Preconcentration of trace rare-earth elements in seawater by complexation with bis(2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Anal Chem 64:737–743.  https://doi.org/10.1021/ac00031a008 CrossRefGoogle Scholar
  58. Sokal RR, Rohlf FJ (2010) Biometry. The principles and practice of statistics in biological research. WH Freeman and Company, New York (United States)Google Scholar
  59. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, New YorkGoogle Scholar
  60. Therios I (2009) Olives. Crop production science in horticulture, 18. CABI, WallingfordGoogle Scholar
  61. Thompson RL, Bank T, Roth E, Granite E (2016) Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS. Fuel 185:94–101.  https://doi.org/10.1016/j.fuel.2016.07.093 CrossRefGoogle Scholar
  62. Turra C (2018) Sustainability of rare earth elements chain: from production to food - a review. Int J Environ Heal R 28:23–42.  https://doi.org/10.1080/09603123.2017.1415307 CrossRefGoogle Scholar
  63. Tyler G (2004) Rare earth elements in soil and plant systems - a review. Plant Soil 267:191–206.  https://doi.org/10.1007/s11104-005-4888-2 CrossRefGoogle Scholar
  64. Tyler G, Olsson T (2002) Conditions related to solubility of rare and minor elements in forest soils. J Plant Nutr Soil Ci 165:594–601.  https://doi.org/10.1002/1522-2624(200210)165:5<594::AID-JPLN594>3.0.CO;2-K CrossRefGoogle Scholar
  65. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334.  https://doi.org/10.1007/s11104-012-1287-3 CrossRefGoogle Scholar
  66. Walter H, Lieth H (1967) Klima-Diagramm Weltatlas. Gustav Fischer Verlag, JenaGoogle Scholar
  67. Wang L, Li J, Zhou Q, Yang G, Lan Ding X, Li X, Cai CX, Zhang Z, Wei HY, Lu TH, Deng XW, Huang XH (2014) Rare earth elements activate endocytosis in plant cells. P Natl Acad Sci USA 111:12936–12941.  https://doi.org/10.1073/pnas.1413376111 CrossRefGoogle Scholar
  68. Watanabe T, Jansen S, Osaki M (2006) Al–Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils. Plant Cell Environ 29:2124–2132.  https://doi.org/10.1111/j.1365-3040.2006.01586.x CrossRefPubMedGoogle Scholar
  69. Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523.  https://doi.org/10.1111/j.1469-8137.2007.02078.x CrossRefPubMedGoogle Scholar
  70. Wyttenbach A, Furrer V, Schleppi P, Tobler L (1998) Rare earth elements in soil and in soil-grown plants. Plant Soil 199:267–273.  https://doi.org/10.1023/A:1004331826160 CrossRefGoogle Scholar
  71. Yuan M, Guo M-N, Liu W-S, Liu C, van der Ent A, Morel JL, Huot H, Zhao W-Y, Wei X-G, Qiu R-L, Tang Y-T (2017) The accumulation and fractionation of rare earth elements in hydroponically grown Phytolacca americana L. Plant Soil 421:67–82.  https://doi.org/10.1007/s11104-017-3426-3 CrossRefGoogle Scholar
  72. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7:203.  https://doi.org/10.3390/min7110203 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Filip Pošćić
    • 1
    • 2
    Email author
  • Mirella Žanetić
    • 1
  • Željka Fiket
    • 2
  • Martina Furdek Turk
    • 2
  • Nevenka Mikac
    • 2
  • Niko Bačić
    • 2
  • Mavro Lučić
    • 2
  • Marija Romić
    • 3
  • Helena Bakić
    • 3
  • Maja Jukić Špika
    • 1
  • Branimir Urlić
    • 1
  • Marko Runjić
    • 1
  • Gabriela Vuletin Selak
    • 1
  • Elda Vitanović
    • 1
  • Tatjana Klepo
    • 1
    • 4
  • Jakša Rošin
    • 1
  • Zed Rengel
    • 5
  • Slavko Perica
    • 1
    • 4
  1. 1.Institute for Adriatic Crops and Karst ReclamationSplitCroatia
  2. 2.Ruđer Bošković InstituteZagrebCroatia
  3. 3.Department of Soil Amelioration, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  4. 4.Centre of Excellence for Biodiversity and Molecular Plant BreedingZagrebCroatia
  5. 5.UWA School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia

Personalised recommendations