Plant and Soil

, Volume 444, Issue 1–2, pp 475–487 | Cite as

New aluminum hyperaccumulator species of the Proteaceae family from southern South America

  • Mabel DelgadoEmail author
  • Susana Valle
  • Patricio Javier Barra
  • Marjorie Reyes-Díaz
  • Alejandra Zúñiga-Feest
Regular Article



Considering that some members of the Proteaceae family are aluminum (Al) and manganese (Mn)–hyperaccumulating species, we aimed to evaluate the presence of the metal hyperaccumulation trait in the Proteaceae family inhabiting southern South America. We also questioned whether other metals (e.g. iron (Fe), copper (Cu) and zinc (Zn)) are hyperaccumulated in the leaves of these species.


Mature and senesced leaves of the six Proteaceae species (Embothrium coccineum, Gevuina avellana, Orites myrtoidea, Lomatia hirsuta, L. ferruginea, and L. dentata) as well as soil samples were collected at nine sites along a very extensive latitudinal gradient in southern Chile. Leaves and soil samples were used for chemical analyses.


The results showed that G. avellana, L. dentata and O. myrtoídea are Al hyperaccumulators, with G. avellana showing the highest leaf Al concentrations. These leaf Al concentrations were independent of percentage of Al saturation and soil pH. No other metal (Fe, Cu, Zn, Mn) was hyperaccumulated in Proteaceae leaves. However, high Mn concentrations in leaves were found, especially in the species with the lowest values of Al concentrations in their leaves.


Three of six species evaluated showed Al hyperaccumulation in their leaves, suggesting that this trait is common in Proteaceae from southern South America.


Acid soils Chilean soils Leaf and soil micronutrients Metals Temperate forests 



This study was financed by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chilean government through FONDECYT initiation project N° 11170368 (MD), FONDECYT Postdoctoral project N° 3150187 (MD) and N° 3170629 (PB), and FONDECYT Regular projects N° 1180699 (AZ–F) and N° 1171286 (MR-D). The authors wish to thank all the people (Ariana Bertin, Andrea Ávila, Gaston Muñoz, and others) who participated in field trips for the collection of soil and leaf samples. Thanks also to Dr. Hans Lambers for reviewing, editing and giving suggestions to the manuscript, which greatly improved it.

Supplementary material

11104_2019_4289_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)


  1. Blair LM, Taylor GJ (1997) The nature of interaction between aluminum and manganese on growth and metal accumulation in Triticum aestivum. Environ Exp Bot 37:25–37. CrossRefGoogle Scholar
  2. Borie F, Rubio R (2003) Total and organic phosphorus in chilean volcanic soils. Gayana Bot 60:69–78CrossRefGoogle Scholar
  3. Bremner J (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33. CrossRefGoogle Scholar
  4. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362CrossRefGoogle Scholar
  5. Chen ZC, Liao H (2016) Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genomics 43:631–638. CrossRefPubMedGoogle Scholar
  6. Chenery EM (1948) Aluminium in the plant world. Part I, general survey in dicotyledons. Kew Bull 3:173–183CrossRefGoogle Scholar
  7. Chenery E (1949) Aluminium in the plant world. Part II. Monocotyledons and gymnosperms. Kew Bull 4:463–473CrossRefGoogle Scholar
  8. Chenery EM, Sporne KR (1976) A note on the evolutionary status of aluminium-accumulators among dicotyledons. New Phytol 76:551–554CrossRefGoogle Scholar
  9. Delgado M, Zúñiga-Feest A, Almonacid L, Lambers H, Borie F (2015) Cluster roots of Embothrium coccineum (Proteaceae) affect enzyme activities and phosphorus lability in rhizosphere soil. Plant Soil 395:189–200. CrossRefGoogle Scholar
  10. Delgado MF, Valle S, Reyes-Díaz M, Barra PJ, Zúñiga-Feest A (2018) Nutrient use efficiency of southern South America Proteaceae species. Are there general patterns in the Proteaceae Family? Front Plant Sci 9:883–895. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Donoso C (2006) Las especies arbóreas de los bosques templados de Chile y Argentina autoecología. Marisa Cúneo Ediciones, ValdiviaGoogle Scholar
  12. Dou CM, Fu XP, Chen XC, Shi JY, Chen YX (2009) Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biol 11:664–670. CrossRefPubMedGoogle Scholar
  13. Drummond L, Maher W (1995) Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex. Re-examination of optimum conditions for the analysis of phosphate. Anal Chim Acta 302:69–74. CrossRefGoogle Scholar
  14. Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Foy C, Fleming A, Schwartz J (1973) Opposite alluminum and manganese tolerances of two wheat varieties. Agron J 65:123–126. CrossRefGoogle Scholar
  16. Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410. CrossRefGoogle Scholar
  17. Hazelton P, Murphy B (2007) Interpreting soil test results: what do all the numbers mean? CSIRO publishing, ClaytonGoogle Scholar
  18. Jaffré T (1979) Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. Comptes Rendus de l'Académie des Sciences Série D: Sciences Naturelles 289:425–428Google Scholar
  19. Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269CrossRefGoogle Scholar
  20. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. CrossRefGoogle Scholar
  21. Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598. CrossRefPubMedGoogle Scholar
  22. Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC, Menzies NW, Nicholson TM, McKenna BA, Wang P (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kopittke PM, McKenna BA, Karunakaran C, Dynes JJ, Arthur Z, Gianoncelli A, Kourousias G, Menzies NW, Ryan PR, Wang P (2017) Aluminum complexation with malate within the root apoplast differs between aluminum resistant and sensitive wheat lines. Front Plant Sci 8:1377. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kukachka B, Miller RB (1980) A chemical spot-test for aluminum and its value in wood identification. IAWA J 1:104–109CrossRefGoogle Scholar
  25. Lambers H, Bishop JG, Hopper SD, Laliberte E, Zuniga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lambers H, Finnegan PM, Jost R, Plaxton WC, Shane MW, Stitt M (2015a) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1:15109. CrossRefPubMedGoogle Scholar
  27. Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2015b) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90. CrossRefPubMedGoogle Scholar
  28. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  29. Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390. CrossRefPubMedGoogle Scholar
  30. Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol 113:1033–1039. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759. CrossRefPubMedCentralGoogle Scholar
  32. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278. CrossRefPubMedGoogle Scholar
  33. Metali F, Salim KA, Burslem DF (2012) Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol 193:637–649. CrossRefPubMedGoogle Scholar
  34. Millaleo R, Reyes-Díaz M, Ivanov A, Mora M, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481. CrossRefGoogle Scholar
  35. Muhammad N, Cai S, Shah JM, Zhang G (2016) The combined treatment of Mn and Al alleviates the toxicity of Al or Mn stress alone in barley. Acta Physiol Plant 38:277. CrossRefGoogle Scholar
  36. Nájera F, Tapia Y, Baginsky C, Figueroa V, Cabeza R, Salazar O (2015) Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in Central Chile. J Soil Sci Plant Nutr 15:84–97. CrossRefGoogle Scholar
  37. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763:609–620. CrossRefGoogle Scholar
  38. Osawa H, Ikeda S, Tange T (2013) The rapid accumulation of aluminum is ubiquitous in both the evergreen and deciduous leaves of Theaceae and Ternstroemiaceae plants over a wide pH range in acidic soils. Plant Soil 363:49–59. CrossRefGoogle Scholar
  39. Pang J, Bansal R, Zhao H, Bohuon E, Lambers H, Ryan MH, Ranathunge K, Siddique KH (2018) The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytol 219:518–529. CrossRefPubMedGoogle Scholar
  40. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566. CrossRefGoogle Scholar
  41. Reeves R (2006) Hyperaccumulation of trace elements by plants. In: M JL, E G, G N (eds) Phytoremediation of metal-contaminated soils. Springer, DordrechtGoogle Scholar
  42. Sadzawka A, Grez R, Carrasco M, Mora M (2004) Métodos de análisis de tejidos vegetales. Comisión de normalización y acreditación sociedad chilena de la ciencia del suelo, ChileGoogle Scholar
  43. Serrano HC, Cotrim H, Pinto MJ, Martins-Loução MA, Branquinho C (2017) Metal hyperaccumulation patterns within Plantago phylogeny (Plantaginaceae). Plant Soil 411:227–241. CrossRefGoogle Scholar
  44. Shane MW, Lambers H (2005) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450. CrossRefGoogle Scholar
  45. Shen R, Ma JF (2001) Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687. CrossRefPubMedGoogle Scholar
  46. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, SunderlandGoogle Scholar
  47. Tolrà R, Vogel-Mikuš K, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barceló J, Regvar M (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172. CrossRefPubMedGoogle Scholar
  48. Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. CrossRefGoogle Scholar
  49. Webb L (1954) Aluminium accumulation in the Australian–New Guinea flora. Aust J Bot 2:176–196. CrossRefGoogle Scholar
  50. Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci 107:18381–18385. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN)Universidad de La FronteraTemucoChile
  2. 2.Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y CienciasUniversidad de La FronteraTemucoChile
  3. 3.Instituto de Ingeniería Agraria y Suelos, Facultad de Ciencias AgrariasUniversidad Austral de ChileValdiviaChile
  4. 4.Centro de Investigación en Suelos Volcánicos (CISVo)ValdiviaChile
  5. 5.Laboratorio de Biología Vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations