Nicotianamine Synthase Gene 1 from the hyperaccumulator Sedum alfredii Hance is associated with Cd/Zn tolerance and accumulation in plants

  • Shaoning Chen
  • Min Zhang
  • Ying Feng
  • Zulfiqar Ali Sahito
  • Shengke TianEmail author
  • Xiaoe YangEmail author
Regular Article


Background and aims

Sedum alfredii Hance is a hyperaccumulator of cadmium (Cd) and zinc (Zn) that exhibits extraordinary accumulation of these metals in various tissues. The Nicotianamine synthase (NAS) genes play key roles in regulating the production of nicotianamine, a non-protein amino acid that facilitates metal homeostasis in plants, but the functions of these genes in S. alfredii remain unknown. The aims of this study were to identify and characterize the NAS gene from S. alfredii (SaNAS1) and explore NAS roles in Cd or Zn tolerance and accumulation.


One Cd-induced NAS gene from S. alfredii (SaNAS1) was cloned. We determined the subcellular localization of the encoded protein and evaluated SaNAS1 expression. We also assessed SaNAS1 function by conducting a complementary assay with yeast mutants Δzrc1 exposed to Cd or Zn. Finally, transgenic Arabidopsis plants expressing SaNAS1 were produced, and SaNAS1 function was further examined in these plants.


SaNAS1 was highly expressed in response to Cd or Zn exposure, and the encoded protein was distributed throughout the cytoplasm and nucleus. Furthermore, yeast expressing SaNAS1 exhibited increased tolerance to Cd or Zn. Finally, expression of SaNAS1 in Arabidopsis increased nicotianamine production and promoted Cd or Zn accumulation in roots and shoots. SaNAS1-expressing transgenic Arabidopsis lines showed improved seedling growth under Cd or Zn stress compared with wild type, indicating that SaNAS1 enhances tolerance to both Cd and Zn.


SaNAS1 may play a critical role in Cd or Zn tolerance and hyperaccumulation by regulating nicotianamine level in S. alfredii.


Cadmium Zinc Hyperaccumulation Nicotianamine synthase Sedum alfredii 



We thank Xiaodan Wu and Shaokun Pang for help with LC-MS/MS and ICP-MS analyses, respectively, and Jie Zhang, Xuerui Cao, and Wanli Guo for excellent technical assistance.


This work was supported by the National Natural Science Foundation of China (grant numbers 41721001, 31872956, 31372128), by the Ministry of Science and Technology of China (2016YFD0800805), by the Public Benefit Technology Applied Research Project of Zhejiang Province (LGN19C150013), and by the Fundamental Research Funds of Central Universities of China.

Supplementary material

11104_2019_4233_MOESM1_ESM.doc (13.4 mb)
ESM 1 (DOC 13714 kb)


  1. Astolfi S, Ortolani MR, Catarcione G, Paolacci AR, Cesco S, Pinton R, Ciaffi M (2014) Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol Plantarum 152:646–659CrossRefGoogle Scholar
  2. Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183CrossRefGoogle Scholar
  3. Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to Iron uptake. Plant Physiol 149:1302–1315CrossRefGoogle Scholar
  4. Bonneau J, Baumann U, Beasley J, Li Y, Johnson AAT (2016) Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat. Plant Biotechnol J 14:2228–2239CrossRefGoogle Scholar
  5. Chao YE, Zhang M, Feng Y, Yang XE, Islam E (2010) cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction. Environ Exp Bot 68:107–112CrossRefGoogle Scholar
  6. Chen SN, Sahito ZA, Zhang M, Feng Y, Yang QY, Yang XE (2018) Identification and characterization of four nicotianamine synthase genes in Sedum alfredii Hance. J Biobased Mater Bio 12:551–559CrossRefGoogle Scholar
  7. Clemens S, Deinlein U, Ahmadi H, Horeth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632CrossRefGoogle Scholar
  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  9. Cornu JY, Deinlein U, Horeth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750CrossRefGoogle Scholar
  10. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11CrossRefGoogle Scholar
  11. Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Kramer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723CrossRefGoogle Scholar
  12. Gao J, Sun L, Yang XE, Liu JX (2013) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8:e64643CrossRefGoogle Scholar
  13. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34CrossRefGoogle Scholar
  14. Han DG, Yang GH, Xu KD, Shao Q, Yu ZY, Wang B, Ge QL, Yu Y (2013) Overexpression of a Malus xiaojinensis Nas1 gene influences flower development and tolerance to iron stress in transgenic tobacco. Plant Mol Biol Rep 31:802–809CrossRefGoogle Scholar
  15. Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737CrossRefGoogle Scholar
  16. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765CrossRefGoogle Scholar
  17. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479CrossRefGoogle Scholar
  18. Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167CrossRefGoogle Scholar
  19. Hofmann NR (2012) Nicotianamine in zinc and iron homeostasis. Plant Cell 24:373–373CrossRefGoogle Scholar
  20. Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381CrossRefGoogle Scholar
  21. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818CrossRefGoogle Scholar
  22. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis Nicotianamine synthase mutants reveals functions for Nicotianamine in seed Iron loading and Iron deficiency responses. Plant Physiol 150:257–271CrossRefGoogle Scholar
  23. Koen E, Besson-Bard A, Duc C, Astier J, Gravot A, Richaud P, Lamotte O, Boucherez J, Gaymard F, Wendehenne D (2013) Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Sci 209:1–11CrossRefGoogle Scholar
  24. Krämer U (2010) Metal Hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefGoogle Scholar
  25. Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC, Huang R, Vatamaniuk OK, Walker EL (2017) Iron-nicotianamine transporters are required for proper long-distance iron signaling. Plant Physiol 175:1254–1268CrossRefGoogle Scholar
  26. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84CrossRefGoogle Scholar
  27. Leitenmaier B, Kupper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4.
  28. Liang J, Shohag MJI, Yang XE, Tian SK, Zhang YB, Feng Y, He ZL (2014) Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Ecotox Environ Safe 100:159–165CrossRefGoogle Scholar
  29. Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. P Natl Acad Sci USA 96:7098–7103CrossRefGoogle Scholar
  30. Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213CrossRefGoogle Scholar
  31. Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587CrossRefGoogle Scholar
  32. Lu LL, Tian SK, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731CrossRefGoogle Scholar
  33. Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122CrossRefGoogle Scholar
  34. Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997CrossRefGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  36. Nozoye T (2018) The nicotianamine synthase gene is a useful candidate for improving the nutritional qualities and Fe-deficiency tolerance of various crops. Front Plant Sci 9.
  37. Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXΦ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77:246–260Google Scholar
  38. Nozoye T, Otani M, Senoura T, Naknishi H, Nishizawa NK (2017) Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant Soil 418:75–88CrossRefGoogle Scholar
  39. Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res 14:739–748CrossRefGoogle Scholar
  40. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324CrossRefGoogle Scholar
  41. Sang J, Han XJ, Liu MY, Qiao GR, Jiang J, Zhuo RY (2013) Selection and validation of reference genes for real-time quantitative PCR in hyperaccumulating ecotype of Sedum alfredii under different heavy metals stresses. PLoS One 8:e82927CrossRefGoogle Scholar
  42. Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci Plant Nutr 45:993–1002CrossRefGoogle Scholar
  43. Tang L, Luo WJ, Chen WK, He ZL, Gurajala HK, Hamid Y, Deng MH, Yang XE (2017) Field crops (Ipomoea aquatica Forsk. And Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Environ Sci Pollut R 24:19293–19305CrossRefGoogle Scholar
  44. Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126CrossRefGoogle Scholar
  45. Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925CrossRefGoogle Scholar
  46. Tian SK, Xie RH, Wang HX, Hu Y, Hou DD, Liao XC, Brown PH, Yang HX, Lin XY, Labavitch JM, Lu LL (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68:2387–2398CrossRefGoogle Scholar
  47. Tsednee M, Yang SC, Lee DC, Yeh KC (2014) Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability. Plant Physiol 166:839–U553CrossRefGoogle Scholar
  48. Tsednee M, Huang YC, Chen YR, Yeh KC (2016) Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Sci Rep 6:26785CrossRefGoogle Scholar
  49. Wada Y, Yamaguchi I, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Highly sensitive quantitative analysis of nicotianamine using LC/ESI-TOF-MS with an internal standard. Biosci Biotechnol Biochem 71:435–441CrossRefGoogle Scholar
  50. Wang X, Liu YO, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) gaud. Environ Exp Bot 62:389–395CrossRefGoogle Scholar
  51. Wang K, Zhu ZQ, Huang HG, Li TQ, He ZL, Yang XE, Alva A (2012) Interactive effects of cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii. J Soils Sediments 12:556–564CrossRefGoogle Scholar
  52. Wang M, Gruissem W, Bhullar NK (2013) Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice. Front Plant Sci 4.
  53. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefGoogle Scholar
  54. Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653CrossRefGoogle Scholar
  55. Xiao WD, Wang H, Li TQ, Zhu ZQ, Zhang J, He ZL, Yang XE (2013) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut R 20:380–389Google Scholar
  56. Xu WF, Shi WM, Yan F, Zhang BA, Liang JS (2011) Mechanisms of cadmium detoxification in cattail (Typha angustifolia L.). Aquat Bot 94:37–43CrossRefGoogle Scholar
  57. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  58. Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant Soil 284:109–119CrossRefGoogle Scholar
  59. Yang GH, Li J, Liu W, Yu ZY, Shi Y, Lv BY, Wang B, Han DG (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic (Amsterdam) 183:77–86CrossRefGoogle Scholar
  60. Yang QY, Ma XX, Luo S, Gao J, Yang XE, Feng Y (2018) SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance. Environ Exp Bot 155:107–117Google Scholar
  61. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572CrossRefGoogle Scholar
  62. Zhang YG, Kong J, Wang Y, Xu XF, Liu LL, Li TZ, Zhu YJ, Han ZH (2009) Isolation and characterization of a nicotianamine synthase gene MxNas1 in Malus xiaojinensis. J Hortic Sci Biotechnol 84:47–52CrossRefGoogle Scholar
  63. Zhang J, Zhang M, Shohag MJI, Tian SK, Song HY, Feng Y, Yang X (2016) Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Planta 243:577–589Google Scholar
  64. Zheng LQ, Cheng ZQ, Ai CX, Jiang XH, Bei XS, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG, Shou HX (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5:e10190Google Scholar
  65. Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
  2. 2.College of Life Sciences and MedicineZhejiang Sci-Tech UniversityHangzhouChina
  3. 3.Zhejiang Mariculture Research InstituteWenzhouChina

Personalised recommendations