Advertisement

Combining cover crops and low nitrogen fertilization improves soil supporting functions

  • Silvina Beatriz Restovich
  • Adrián Enrique Andriulo
  • Cecilia María Armas-Herrera
  • María José Beribe
  • Silvina Isabel PortelaEmail author
Regular Article

Abstract

Background and aims

Cover crops may restore soil functions lost with single summer crop sequences enhancing soil organic carbon and nitrogen (SOC and SON) stocks. We investigated the effect of cover crops and low nitrogen (N) fertilization on SOC and SON and soil structure (pore size distribution and aggregate stability), and connected changes with cover crop-related variables.

Methods

We used a six-year experiment with different winter cover crops in a maize-soybean rotation under no tillage with or without N fertilization of maize (32 kg ha−1).

Results

Most cover crops increased SOC (0.36 ± 0.23 Mg ha−1 yr.−1) and vetch also increased SON in the absence of N fertilization. With cover crops, N storage shifted from inorganic to more stable organic forms (SON and cover crop biomass). Cover crops except forage radish increased soil porosity favoring 300–60 μm macropores (0–10 cm depth). Soil aggregation at 0–5 cm depth was more stable with than without cover crops (43 and 25%, respectively). The effect of glomalin as aggregation agent was observed in the absence of N fertilization.

Conclusions

Increased N retention and input (in the case of vetch), combined with C input from cover crops, increased organic reserves and improved soil structure, enabling N fertilization reduction.

Keywords

Cropping intensity Soil organic carbon and nitrogen Soil structure Glomalin Nitrogen balance 

Notes

Acknowledgements

This research was supported by the Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina) through project PNSUELO 1134042. The authors are grateful to Juliana Torti, Leticia García and Jimena Dalpiaz for laboratory assistance and to Diego Colombini, Fabio Villalba, Adolfo Sosa and Alberto Rondán for field assistance. Diego Chavarria collaborated with the determination of soil glomalin concentration at the Instituto de Patología Vegetal (IPAVE-INTA, Argentina). We are especially grateful to Jorge Mercau who thoroughly reviewed our work and contributed with significant input.

References

  1. Alvarez C, Alvarez CR, Costantini A, Basanta M (2014a) Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil Till Res 142:25–31.  https://doi.org/10.1016/j.still.2014.04.005 CrossRefGoogle Scholar
  2. Alvarez R (2005) A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag 21:38–52CrossRefGoogle Scholar
  3. Alvarez CR, Rimski-Korsakov H, Prystupa P, Lavado RS (2007) Nitrogen dynamics and losses in direct-drilled maize systems Communications in Soil Science and Plant Analysis. 38:38–2059.  https://doi.org/10.1080/00103620701548712
  4. Alvarez R, Steinbach HS, De Paepe JL (2014b) A regional audit of nitrogen fluxes in pampean agroecosystems. Agric Ecosyst Environ 184:1–8.  https://doi.org/10.1016/j.agee.2013.11.003 CrossRefGoogle Scholar
  5. Andriulo A, Mary B, Guérif J (1999) Modeling soil carbon dynamics with various cropping sequences on the rolling pampas. Agronomie 19:365–377CrossRefGoogle Scholar
  6. Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294.  https://doi.org/10.1016/j.soilbio.2013.09.005 CrossRefGoogle Scholar
  7. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699.  https://doi.org/10.1016/j.tree.2014.10.006 CrossRefGoogle Scholar
  8. Bezerra de Oliveira L (1968) Determinação do macro e micro porosidade pela “mesa de tensão” em mostras de solo com estrutura indeformada. Pesquisa Agrop Bras 3:197–200Google Scholar
  9. Bremner JM, Mulvaney CS (1982) Nitrogen-Total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: chemical and microbiological properties, part 2. Soil Science Society of America and American Society of Agronomy, Madison, WI, pp 595–624Google Scholar
  10. Burke W, Gabriels D, Bouma J (1986) Soil structure assessment. AA Balkema, Rotterdam, pp 92Google Scholar
  11. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22CrossRefGoogle Scholar
  12. Cambardella CA, Elliot ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783CrossRefGoogle Scholar
  13. Caride C, Piñeiro G, Paruelo JM (2012) How does agricultural management modify ecosystem services in the argentine pampas? The effects on soil C dynamics. Agric Ecosyst Environ 154:23–33.  https://doi.org/10.1016/j.agee.2011.05.031 CrossRefGoogle Scholar
  14. Carnelos DA, Michel CL, Portela S, Jobbágy EG, Jackson RB, Di Bella C, Panario D, Fagúndez C, Grion LC, Carreño L, Piñeiro G (2014) Variación espacial y temporal de las deposiciones atmosféricas en Argentina y Uruguay. Reunión Binacional Uruguay-Argentina de Agrometeorología y XV Reunión Argentina de Agrometeorología, 1-3 October, Piriápolis, UruguayGoogle Scholar
  15. Caviglia OP, Sadras VO, Andrade FH (2004) Intensification of agriculture in the south-eastern pampas: I. capture and efficiency in the use of water and radiation in double-cropped wheat-soybean. Field Crop Res 87:117–129.  https://doi.org/10.1016/j.fcr.2003.10.002 CrossRefGoogle Scholar
  16. Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278.  https://doi.org/10.1016/j.agee.2009.10.005 CrossRefGoogle Scholar
  17. Chen G, Weil R (2010) Penetration of cover crops roots through compacted soils. Plant Soil 331:31–43.  https://doi.org/10.1007/s11104-009-0223-7 CrossRefGoogle Scholar
  18. Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381.  https://doi.org/10.1016/j.soilbio.2013.11.020 CrossRefGoogle Scholar
  19. De Notaris C, Rasmussen J, Sørensen P, Olesen JE (2018) Nitrogen leaching: a crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric Ecosyst Environ 255:1–11CrossRefGoogle Scholar
  20. Douglas JT, Goss MJ (1982) Stability and organic matter of surface soil aggregates under different methods of cultivation and in grassland. Soil Till Res 2:155–175CrossRefGoogle Scholar
  21. Drinkwater LE (2004) Improving fertilizer nitrogen use efficiency through an ecosystem-based approach. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, USA, pp 93–102Google Scholar
  22. Drinkwater LE, Snapp SS (2007) Nutrients in agroecosystems: rethinking the management paradigm. In: Donald LS (ed) advances in agronomy, academic press, pp 163-186Google Scholar
  23. Dube E, Chiduza C, Muchaonyerwa P (2012) Conservation agriculture effects on soil organic matter on a haplic Cambisol after four years of maize–oat and maize–grazing vetch rotations in South Africa. Soil Till Res 123:21–28.  https://doi.org/10.1016/j.still.2012.02.008 CrossRefGoogle Scholar
  24. Duval ME, Galantini JA, Capurro JE, Martinez JM (2016) Winter cover crops in soybean monoculture: effects on soil organic carbon and its fractions. Soil Till Res 161:95–105.  https://doi.org/10.1016/j.still.2016.04.006 CrossRefGoogle Scholar
  25. Enrico JM, Piccinetti CF, Barraco MR, Agosti MB, Eclesia RP, Salvagiotti F (2018) Contribución de la fijación biológica del nitrógeno y respuesta a la inoculación en arveja y vicia. XXVI Congreso Argentino de la Ciencia del Suelo. Asociación Argentina de la Ciencia del Suelo, Tucumán, Argentina, 15-18 may 2018, pp 128Google Scholar
  26. Feller C (1979) Une méthode de fractionnement granulométrique de la matière organique du soil. Application aux sols tropicaux à textures grossières, très pauvres en humus. Cahiers ORSTOM série Pédologie 17:339–346Google Scholar
  27. Gabriel JL, Quemada M (2011) Replacing bare fallow with cover crops in a maize cropping system: yield, N uptake and fertiliser fate. Eur J Agron 34:133–143CrossRefGoogle Scholar
  28. Goss MJ, Kay BD (2005) Soil aggregation. In: Zobel RW, Wright SF (eds) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, USA, pp 163–180Google Scholar
  29. Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field-crop systems of the pampas. In: Pearson CJ (ed) Field crop ecosystems. Ecosystems of the world. Elsevier, Amsterdam, pp 413–450Google Scholar
  30. Hartmann C (2006) Future of soil science. In: Hartemink AE (ed) The future of soil science. International Union of Soil Sciences, Wageningen, The Netherlands, pp 57–59Google Scholar
  31. Hillel D (1980) Soil water: content and potential. Fundaments of soil physics. Academic Press, In, pp 123–165Google Scholar
  32. Irizar A, Andriulo A, Mary B (2013) Long-term impact of no tillage in two intensified crop rotations on different soil organic matter fractions in argentine rolling Pampa. Open Agriculture Journal 7:22–31CrossRefGoogle Scholar
  33. Kemper WD (1965) Aggregate stability. In: Black CA (ed) Methods of soil analysis, part 1. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp 511–519Google Scholar
  34. Loades KW, Bengough A, Fraser Bransby M, Hallett PD (2013) Reinforcement of soil by fibrous roots. In: Timlin D, Ahuja LR (eds) Enhancing understanding and quantification of soil-root growth interactions. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, USA, pp 197–228Google Scholar
  35. Mazzilli SR, Kemanian AR, Ernst OR, Jackson RB, Piñeiro G (2014) Priming of soil organic carbon decomposition induced by corn compared to soybean crops. Soil Biol Biochem 75:273–281.  https://doi.org/10.1016/j.soilbio.2014.04.005 CrossRefGoogle Scholar
  36. Mbuthia LW, Acosta-Martínez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N (2015) Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem 89:24–34.  https://doi.org/10.1016/j.soilbio.2015.06.016 CrossRefGoogle Scholar
  37. Nivelle E, Verzeaux J, Habbib H, Kuzyakov Y, Decocq G, Roger D, Lacoux J, Duclercq J, Spicher F, Nava-Saucedo JE, Catterou M, Dubois F, Tetu T (2016) Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl Soil Ecol 108:147–155.  https://doi.org/10.1016/j.apsoil.2016.08.004 CrossRefGoogle Scholar
  38. Novelli LE, Caviglia OP, Wilson MG, Sasal MC (2013) Land use intensity and cropping sequence effects on aggregate stability and C storage in a vertisol and a Mollisol. Geoderma 195–196:260–267.  https://doi.org/10.1016/j.geoderma.2012.12.013 CrossRefGoogle Scholar
  39. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page A, Miller RH, Keeney DR (eds) Methods of soils analysis, part II, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, WI, pp 539–577Google Scholar
  40. Paul BK, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso TT, Koala S, Lelei D, Ndabamenye T, Six J, Pulleman MM (2013) Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric Ecosyst Environ 164:14–22CrossRefGoogle Scholar
  41. Peyrard C, Mary B, Perrin P, Véricel G, Gréhan E, Justes E, Léonard J (2016) N2O emissions of low input cropping systems as affected by legume and cover crops use. Agric Ecosyst Environ 224:145–156.  https://doi.org/10.1016/j.agee.2016.03.028 CrossRefGoogle Scholar
  42. Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric Ecosyst Environ 200:33–41.  https://doi.org/10.1016/j.agee.2014.10.024 CrossRefGoogle Scholar
  43. Portela SI, Andriulo AE, Sasal MC, Mary B, Jobbágy EG (2006) Fertilizer vs. organic matter contributions to nitrogen leaching in cropping systems of the pampas: 15N application in field lysimeters. Plant Soil 289:265–277.  https://doi.org/10.1007/s11104-006-9134-z CrossRefGoogle Scholar
  44. Portela SI, Andriulo AE, Jobbágy EG, Sasal MC (2009) Water and nitrate exchange between cultivated ecosystems and groundwater in the rolling pampas. Agric Ecosyst Environ 134:277–286.  https://doi.org/10.1016/j.agee.2009.08.001 CrossRefGoogle Scholar
  45. Portela SI, Restovich SB, Gonzalez HM, Torti MJ (2016) Reducción del drenaje profundo y la lixiviación de nitrógeno en rotaciones agrícolas con cultivos de cobertura. Ecol Austral 26:212–220Google Scholar
  46. Poulton PR, Pye E, Hargreaves PR, Jenkinson DS (2003) Accumulation of carbon and nitrogen by old arable land reverting to woodland. Glob Chang Biol 9:942–955.  https://doi.org/10.1046/j.1365-2486.2003.00633.x CrossRefGoogle Scholar
  47. Re M, Barros V (2009) Extreme rainfalls in SE South America. Clim Chang 96:119–136CrossRefGoogle Scholar
  48. Restovich SB, Andriulo A, Amendola C (2011) Inclusion of cover crops in a soybean-corn rotation: effect on some soil properties. Ciencia del Suelo 29:61–73Google Scholar
  49. Restovich SB, Andriulo AE, Portela SI (2012) Introduction of cover crops in a maize–soybean rotation of the humid pampas: effect on nitrogen and water dynamics. Field Crop Res 128:62–70.  https://doi.org/10.1016/j.fcr.2011.12.012 CrossRefGoogle Scholar
  50. Rillig M, Wright S, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333.  https://doi.org/10.1023/a:1014483303813 CrossRefGoogle Scholar
  51. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53.  https://doi.org/10.1111/j.1469-8137.2006.01750.x CrossRefGoogle Scholar
  52. Rimski-Korsakov H, Alvarez CR, Lavado RS (2015) Cover crops in the agricultural systems of the argentine pampas. J Soil Water Conserv 70:134A–140A.  https://doi.org/10.2489/jswc.70.6.134A CrossRefGoogle Scholar
  53. Ritchie SW, Hanway JJ, Benson GO (1982) How a corn plant develops. Lowa State University of Science and Technology. Cooperative extension service Ames, lowa. Special report 48Google Scholar
  54. Saffih-Hdadi K, Mary B (2008) Modeling consequences of straw residues export on soil organic carbon. Soil Biol Biochem 40:594–607.  https://doi.org/10.1016/j.soilbio.2007.08.022 CrossRefGoogle Scholar
  55. Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13.  https://doi.org/10.1016/j.fcr.2008.03.001 CrossRefGoogle Scholar
  56. SAS (2009) SAS/STAT User's guide. SAS Institute Inc, Cary, North CarolinaGoogle Scholar
  57. Sasal MC, Andriulo AE (2005) Cambios en la porosidad edáfica bajo siembra directa por la introducción de Raphanus sativus L. (Nabo forrajero). Revista de Investigaciones Agropecuarias 34:131–150Google Scholar
  58. Sasal MC, Andriulo AE, Taboada MA (2006) Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian pampas. Soil Till Res 87:9–18.  https://doi.org/10.1016/j.still.2005.02.025 CrossRefGoogle Scholar
  59. Sasal MC, Castiglioni MG, Wilson MG (2010) Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage. Soil Till Res 108:24–29.  https://doi.org/10.1016/j.still.2010.03.010 CrossRefGoogle Scholar
  60. Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, Kemanian AR, Mortensen DA, Ryan MR, Tooker J, White C (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22.  https://doi.org/10.1016/j.agsy.2013.11.004 CrossRefGoogle Scholar
  61. Sisti CPJ, dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Till Res 76:39–58.  https://doi.org/10.1016/j.still.2003.08.007 CrossRefGoogle Scholar
  62. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31.  https://doi.org/10.1016/j.still.2004.03.008 CrossRefGoogle Scholar
  63. Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Temperate subhumid grasslands of South America. Rio de la Plata grasslands. In: Coupland RT (ed) natural grasslands. Ecosystems of the world, vol 8, Elsevier, Amsterdam, pp 367-407Google Scholar
  64. Thorup-Kristensen K, Magid J, Jensen LS, Sparks (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy, Academic Press, pp 227–302Google Scholar
  65. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  66. Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72.  https://doi.org/10.1016/j.agee.2005.07.003 CrossRefGoogle Scholar
  67. Viglizzo EF, Frank FC, Carreño LV, Jobbágy EG, Pereyra H, Clatt J, Pincén D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17:959–973.  https://doi.org/10.1111/j.1365-2486.2010.02293.x CrossRefGoogle Scholar
  68. Wingeyer A, Amado T, Pérez-Bidegain M, Studdert G, Varela C, Garcia F, Karlen D (2015) Soil quality impacts of current south American agricultural practices. Sustainability 7:2213–2242CrossRefGoogle Scholar
  69. Wright S (2005) Management of arbuscular mycorrhizal fungi. In: Zobel RW, Wright SF (eds) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, USA, pp 183–197Google Scholar
  70. Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 16:575–585CrossRefGoogle Scholar
  71. Wright S, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hiphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107CrossRefGoogle Scholar
  72. Wright SF, Green VS, Cavigelli MA (2007) Glomalin in aggregate size classes from three different farming systems. Soil Till Res 94:546–549.  https://doi.org/10.1016/j.still.2006.08.003 CrossRefGoogle Scholar
  73. Zhu W, Wang S, Caldwell CD (2012) Pathways of assessing agroecosystem health and agroecosystem management. Acta Ecol Sin 32:9–17.  https://doi.org/10.1016/j.chnaes.2011.11.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo Gestión Ambiental, Estación Experimental Agropecuaria PergaminoINTA (Instituto Nacional de Tecnología Agropecuaria)Buenos AiresArgentina
  2. 2.Escuela Politécnica de HuescaUniversidad de ZaragozaHuescaSpain
  3. 3.Departamento de Estadística, Estación Experimental Agropecuaria PergaminoINTA (Instituto Nacional de Tecnología Agropecuaria)Buenos AiresArgentina

Personalised recommendations