Microbes mediated plant stress tolerance in saline agricultural ecosystem

  • Richa Salwan
  • Anu Sharma
  • Vivek SharmaEmail author
Review Article



The accumulation of salts leads to assimilation of dissolved salts in the soil which results in soil salinity. Salinity affects the crop yield by reducing the levels of minerals availability, inducing ions mediated toxicity, osmotic stress, growth regulators level and reactive oxygen species production which ultimately lead to the inhibition of seed germination, seedling growth, onset of flowering, and fruit set.


The beneficial microorganisms are attractive candidate to increase the agricultural productivity in saline ecosystem. The plant beneficial microbiome offers significant prospective to magnify the plant resilience and crop yields in saline agriculture systems either by modulating the uptake of ions, regulation of plant growth regulators and by the production of exopolysaccharides and alleviate the salinity stress.


Salt tolerance is a complex manifestation of different physiological and biochemical events. The microbes mediated mechanisms underlying regulation of salinity responses involved in ion transport and homeostasis, osmolytes regulation, hormonal balance, antioxidant machinery and other stress signaling are critical in developing plant adaptation strategies to salinity stress. Therefore, plant beneficial microbes are attractive choice in alleviating plant stresses saline soil.


Abiotic Stress Saline Plant growth rhizobacteria Growth regulators 



The authors are thankful to Chandigarh University for providing necessary infrastructure and SEED Division, Department of Science and Technology, GOI for providing financial benefits (SP/YO/125/2017) and (SEED-TIASN-023-2018) during the completion of this work.

Compliance with ethical standards

Conflict of interests

The authors declared no conflict of interests.


  1. Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, vol 1992, 2nd edn. Academic Press, New YorkGoogle Scholar
  2. Acuña JJ, Campos M, De M, Mora L, Jaisi DP, Jorquera MA (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190CrossRefGoogle Scholar
  3. Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88Google Scholar
  4. Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21CrossRefGoogle Scholar
  5. Aliasgharzad N, Neyshabouri MR, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 19:324–328Google Scholar
  6. Al-Karaki GN, Ammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47CrossRefGoogle Scholar
  7. Amato M, Ladd JN (1994) Application of the ninhydrin-reactive N assay for microbial biomass in acid soils. Soilless Biol Biochem 26:1109–1115CrossRefGoogle Scholar
  8. Anderson JPE, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soilless Science 130:211–216CrossRefGoogle Scholar
  9. Arias S, Ferrer MR, del Moral A, Quesada E, Bejar V (2003) Mauran, an exopolysaccharyde produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–324CrossRefPubMedGoogle Scholar
  10. Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non- mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arora M, Kaushik A, Rani N, Kaushik CP (2010) Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol 31(5):701–704PubMedGoogle Scholar
  12. Arora NK, Balestrini R, Mehnaz S (2016) Bioformulations: For sustainable agriculture. For Sustainable Agriculture, Bioformulations, pp 1–299Google Scholar
  13. Arshad M, Saleem M (2007) Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation Trends Biotechnol 8:356–362Google Scholar
  14. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216CrossRefGoogle Scholar
  15. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  16. Aubert S, Assard N, Boutin JP, Frenot Y, Dorne AJ (1999) Carbon metabolism in the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br.: environmental controls over carbohydrates and proline contents and relation to phenology. Plant Cell Environ 22:243–254CrossRefGoogle Scholar
  17. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339CrossRefPubMedGoogle Scholar
  18. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510CrossRefPubMedGoogle Scholar
  19. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45:405–413CrossRefGoogle Scholar
  20. Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoulation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic (Amsterdam) 109:8–14CrossRefGoogle Scholar
  21. Barra P, Inostroza N, Acuña J, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91CrossRefGoogle Scholar
  22. Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272CrossRefGoogle Scholar
  23. Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG et al (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91CrossRefPubMedGoogle Scholar
  24. Ben Khaled L, Gomez AM, Ourraqi EM, Oihabi A (2003) Physio- logical and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23:571–580CrossRefGoogle Scholar
  25. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2007) Plant-soil feedbacksand mycorrhizal type influence temperate forest population dynamics. Science 355:181–184CrossRefGoogle Scholar
  26. Beyrle H (1995) The role of phytohormones in the function and biology of mycorrhizas. In: Varma A, Hock B (eds) Mycorhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 365–391Google Scholar
  27. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(1):1–10CrossRefGoogle Scholar
  28. Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107CrossRefPubMedGoogle Scholar
  29. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase- encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470CrossRefPubMedGoogle Scholar
  30. Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kanga - Sjarvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892CrossRefPubMedPubMedCentralGoogle Scholar
  31. Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54CrossRefPubMedGoogle Scholar
  32. Bomfeti CA et al (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Rev Bras Ciênc Solo 35(3):657–671CrossRefGoogle Scholar
  33. Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V (2001) Halomonas maura sp. nov. a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632CrossRefPubMedGoogle Scholar
  34. Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, New JerseyGoogle Scholar
  35. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28Google Scholar
  36. Bu Q, Lv T, Shen H et al (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164(1):424–439Google Scholar
  37. Bulgarelli D (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefPubMedGoogle Scholar
  38. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):1–14CrossRefGoogle Scholar
  39. Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350Google Scholar
  40. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLOS ONE 8(2):1–10CrossRefGoogle Scholar
  41. Chatterjee P, Kanagendran A, Samaddar S et al (2019) Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. Sci Total Environ 645:721–732CrossRefGoogle Scholar
  42. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384CrossRefPubMedGoogle Scholar
  43. Chen S, Li J, Wang S, Huttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186–194CrossRefGoogle Scholar
  44. Chen L, Liu Y, Wu G, Njeri KV, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44CrossRefPubMedGoogle Scholar
  45. Cheng X, Carolien R, Harro B (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4(June):1–16Google Scholar
  46. Chhabra R (1996) Soil salinity and water quality. In: CRC Press Rotterdam. Balkema, The NetherlandsGoogle Scholar
  47. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar
  48. Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528CrossRefPubMedGoogle Scholar
  49. Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600CrossRefPubMedPubMedCentralGoogle Scholar
  50. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163CrossRefPubMedPubMedCentralGoogle Scholar
  51. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303CrossRefPubMedGoogle Scholar
  52. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147Google Scholar
  53. Cui L et al (2018) The Drnf1 gene from the drought-adapted cyanobacterium Nostoc Flagelliforme improved salt tolerance in transgenic Synechocystis and Arabidopsis. Plant Genes 9(9)Google Scholar
  54. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422CrossRefPubMedGoogle Scholar
  55. de Lourdes Oliveira Otoch M, Sobreira ACM, de Aragão MEF, Orellano EG, da Guia Silva Lima M, de Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158(5):545–551CrossRefGoogle Scholar
  56. Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S (2016) Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus, 2324. Plant Signal Behav 11(2):e1113363CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 636:3415–3428CrossRefGoogle Scholar
  58. Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107CrossRefPubMedPubMedCentralGoogle Scholar
  59. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34(2):150–170CrossRefPubMedGoogle Scholar
  60. Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan 423–436. Microb Ecol 57(3):423–436CrossRefPubMedGoogle Scholar
  61. Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Miransari, M. (Ed.), biotechnological techniques of stress tolerance in plants. Stadium Press LLC, USA, pp. 21–39.Google Scholar
  62. Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soil 45:563–571CrossRefGoogle Scholar
  63. Egamberdieva, Dilfuza, Ben Lugtenberg (2014) Use of Plant growth-promoting rhizobacteria to alleviate salinity stress in plants. Use ofMicrobes for the Alleviation of Soil Stresses, Publisher: Springer New York, Editors: Mohammad Miransari, pp.73-96Google Scholar
  64. Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013a) Alleviation of salt stress of symbiotic Galega officinalis L. (Goat’s Rue) by co-inoculation of rhizobium with root colonising Pseudomonas. Plant Soil 369(1–2):453–465CrossRefGoogle Scholar
  65. Egamberdieva D, Jabborova D, Mamadalieva N (2013b) Salt tolerant Pseudomonas extremoriental is able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7(1):7–10Google Scholar
  66. Egamberdieva, D & Lugtenberg, B. (2014) Use of Plant Growth-Promoting Rhizobacteria to Alleviate SalinGoogle Scholar
  67. Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in central Asia. Taylor-Francis, New York, pp 147–162CrossRefGoogle Scholar
  68. Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus x canescens). Planta 229:299–309CrossRefPubMedGoogle Scholar
  69. Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 77–85Google Scholar
  70. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Renegal Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of leaf P-concentration of soluble sugars in roots. Mycorrhiza 12:185–190CrossRefPubMedGoogle Scholar
  71. Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  72. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Water Sci Technol 43:1–8CrossRefPubMedGoogle Scholar
  73. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612CrossRefGoogle Scholar
  74. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46CrossRefGoogle Scholar
  75. Gamalero E, Glick B (2015) Bacterial Modulation Of Plant Ethylene. Levels Plant Physiol 169:13–22CrossRefPubMedGoogle Scholar
  76. Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer-Verlag, Berlin, pp 395–412CrossRefGoogle Scholar
  77. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467CrossRefPubMedGoogle Scholar
  78. Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial Strategies for Crop Improvement. Springer- Verlag, Berlin, pp 1–22Google Scholar
  79. German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil 32:259–264CrossRefGoogle Scholar
  80. Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:438–443CrossRefPubMedGoogle Scholar
  81. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312CrossRefPubMedGoogle Scholar
  82. Glick BR (2013) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microb Res 169:30–39CrossRefGoogle Scholar
  83. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefPubMedGoogle Scholar
  84. Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994a) Does the enzyme 1-aminocyclopropane-1-carboxy- late deaminase play a role in plant growth promotion by Pseudomonas putida GR12–2? In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 150–152Google Scholar
  85. Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994b) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can J Microbiol 40:911–915CrossRefGoogle Scholar
  86. Glick BR, Karaturovı’c DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth-promoting pseudomonads. Can J Microbiol 41:533–536CrossRefGoogle Scholar
  87. Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of plant growth promoting rhzobacterium Pseudomonas putida GR 12–2. Soil Biol Biochem 29:1233–1239CrossRefGoogle Scholar
  88. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theoret Biol 190:63–68Google Scholar
  89. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev. Plant Sci 26:227–242CrossRefGoogle Scholar
  90. Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32(7):1007–1016CrossRefPubMedGoogle Scholar
  91. Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146CrossRefPubMedGoogle Scholar
  92. Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51:387–395CrossRefGoogle Scholar
  93. Goswamia D, Dhandhukiab P, Patela P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75CrossRefGoogle Scholar
  94. Gros R, Poly F, Monrozier LJ, Faivre P (2003) Plant and soil microbial community responses to solid waste leachates diffusion on grassland. Plant and Soilless 255:445–455CrossRefGoogle Scholar
  95. Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720CrossRefGoogle Scholar
  96. Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16) a pleiotropic mutant that nodulated poorly and has pale green leaves. J Exp Bot 51:885–894PubMedGoogle Scholar
  97. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants physiological, biochemical and molecular characterization. Inter J Genom. Article ID 701596:18Google Scholar
  98. Ha CV, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Van Dong N, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2014) The auxin response factor transcription fac- tor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 20:511–524Google Scholar
  99. Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44:37–42CrossRefGoogle Scholar
  100. Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525PubMedPubMedCentralGoogle Scholar
  101. Harman GE, Howell CR, Viterbo A, Chel I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefPubMedGoogle Scholar
  102. Hartung W, Witt J (1968) On the influence of soil moisture on the auxin content of Anastatica hierochuntica and Helianthus anuus. Flora 157:603–614Google Scholar
  103. Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, Garcia Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phyt 175:554–564CrossRefGoogle Scholar
  104. Heydarian Z et al (2016) Inoculation of soil with plant growth promoting bacteria producing deaminase or expression of the corresponding AcdS gene in transgenic plants increases salinity tolerance in Camelina Sativa. Front Microbiol 7:1966CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogenuse efficiency in crop plants: towards a more central role for genetic variability andquantitative genetics within integrated approaches. J Exp Bot 58:2369–2387CrossRefPubMedGoogle Scholar
  106. Hirt H (2009) Plant Stress Biology: From Genomics to Systems Biology. Wiley, West SussexCrossRefGoogle Scholar
  107. Hong Y, Glick BR, Pasternak JJ (1991) Plant-microbial interaction under gnotobiotic conditions: A scanning electron microscope study. Curr Microbiol 23:111–114CrossRefGoogle Scholar
  108. Honma M (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1- carboxylate deaminase. Agric Biol Chem 49:567–571Google Scholar
  109. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1- carboxylic acid. Agric Biol Chem 42:1825–1831Google Scholar
  110. Hontzeas N et al (2004) Expression and characterization of 1- aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19CrossRefPubMedGoogle Scholar
  111. Jacobson CB et al (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  112. Jain M, Khurana J (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162CrossRefPubMedGoogle Scholar
  113. Janczarek M, Skorupska A (2011) Modulation of Rosr expression and exopolysaccharide production in Rhizobium leguminosarum bv. trifolii by phosphate and clover root exudates. Int J Mol Sci 12(6):4132–4155CrossRefPubMedPubMedCentralGoogle Scholar
  114. Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277CrossRefGoogle Scholar
  115. Jia YJ et al (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549CrossRefPubMedGoogle Scholar
  116. Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X et al (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63:6421–6430CrossRefPubMedPubMedCentralGoogle Scholar
  117. Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R (1993) Effect of vesicular-arbuscular mycorrhiza on metabolism of moong plants under salinity. Plant Physiol Biochem 31:475–481Google Scholar
  118. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefGoogle Scholar
  119. Jones DL, Nguyen C (2009) Carbon flow in the rhizosphere: carbon trading at the soil- root surface Plant Soil.Google Scholar
  120. Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Effects of salt stress on the anatomy and auxin physiology of poplar xylem. Plant Cell Environ 29:1519–1531CrossRefPubMedGoogle Scholar
  121. Kaldewey H, Ginkel U, Wawczyniak G (1974) Auxin transport and water stress in pea (Pisum sativum L.). Berichte der Deutschen Botanischen Gesellschaft 87:563–576Google Scholar
  122. Kang SM, Khana AL, Waqas M, You YH, Kimd JH, Kimc JG, Hamayune M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumiss ativus. J Plant Interact 9(1):673–682CrossRefGoogle Scholar
  123. Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227CrossRefGoogle Scholar
  124. Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas -mediated expression of high affinity K+ − transporter (HKT1) gene. Curr Sci 111(12):1961–1967CrossRefGoogle Scholar
  125. Kende H (1993) Ethylene biosynthesis. Ann Rev Plant Physiol Plant Mol Biol 44:283–307CrossRefGoogle Scholar
  126. Killham K (1994) Soil ecology (pp. 152–154)UK: Cambridge University Press152–154.Google Scholar
  127. Kimmel SA, Roberts RF (1998) Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int J Food Microbiol 40:87–92CrossRefPubMedGoogle Scholar
  128. Koltai H (2013) Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot 14:409–415Google Scholar
  129. Koltai H (2015) Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J Exp Bot 66:4855–4861Google Scholar
  130. Kong CC, Gang C, Run R, Li Z, Hong Z, Ji X, Wang P (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. J Plant Growth Regul 36:734CrossRefGoogle Scholar
  131. Kumar MA, Anandapandian KT, Parthiban K (2011) Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz Arch Biol Technol 54:259–265CrossRefGoogle Scholar
  132. Kumari S, Anukool V, Shekhar Jain VA, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean. J Plant Growth Regul 34:558–573CrossRefGoogle Scholar
  133. Lakshmanan V, Ray P, Craven KD (2017) Plant Stress Tolerance:1631Google Scholar
  134. Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88CrossRefPubMedGoogle Scholar
  135. Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276Google Scholar
  136. Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:1759–1763CrossRefPubMedPubMedCentralGoogle Scholar
  137. Li J, McConkey BJ, Cheng Z, Guo S (2013) Glick BR (2013) identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteome 84:119–131Google Scholar
  138. Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514CrossRefPubMedGoogle Scholar
  139. Liu J, Tang L, Gao H, Zhang M, Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 99(1):281–289CrossRefPubMedGoogle Scholar
  140. Llamas I, Manuel J, Quesada E, Moral A, Martı F (2005) The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. EMS Microbiol Lett 244:69–74CrossRefGoogle Scholar
  141. López-ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with bene fi cial and detrimental organisms : the yin and Yang. Trends Plant Sci 22(6):527–537Google Scholar
  142. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  143. Lynch J (1990) The rhizosphere. Wiley, London, p 458Google Scholar
  144. Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83:285–291CrossRefPubMedGoogle Scholar
  145. Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618CrossRefGoogle Scholar
  146. Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 1–19Google Scholar
  147. Marquez-Garcia B, Njo M, Beeckman T, Goormachtig S, Foyer CH (2014) A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant Cell Environ 37(2):488–498CrossRefPubMedGoogle Scholar
  148. Martınez-Canovas MJ, Quesada E, Martınez-Checa F, Bejar V (2004) A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:35–348CrossRefGoogle Scholar
  149. Matysik J, Ali BB, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under water stress in plants. Curr Sci 82:525–532Google Scholar
  150. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Cell Biol 8:409–414CrossRefGoogle Scholar
  151. Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53CrossRefPubMedGoogle Scholar
  152. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedGoogle Scholar
  153. McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949CrossRefPubMedPubMedCentralGoogle Scholar
  154. Mendel R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biology 12:242–258CrossRefPubMedGoogle Scholar
  155. Mendes R, Garbeva P, Raaijmakers J (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefPubMedGoogle Scholar
  156. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118CrossRefPubMedGoogle Scholar
  157. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706CrossRefPubMedPubMedCentralGoogle Scholar
  158. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):16–19CrossRefGoogle Scholar
  159. Montero-Calasanz MC, Santamaría C, Albareda M, Daza A, Duan J, Glick BR et al (2013) Rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria. Span J Agric Res 11:146–154CrossRefGoogle Scholar
  160. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617CrossRefPubMedGoogle Scholar
  161. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663CrossRefPubMedGoogle Scholar
  162. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  163. Murti GSR, Upreti KK (2007) Plant growth regulators in water stress tolerance. J Hort Sci 2(2):73–93Google Scholar
  164. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448CrossRefPubMedGoogle Scholar
  165. Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71CrossRefGoogle Scholar
  166. Nanjo T, Futamura N, Nishiguchi M, Igasaki T, Shinozaki K, Shinohara K (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol 45:1738–1748CrossRefPubMedGoogle Scholar
  167. Naqvi SM (1972) Auxin transport under saline conditions. Experientia 28:1246CrossRefGoogle Scholar
  168. Naqvi SM, Ansari R (1973) Estimation of diffusible auxin under saline growth conditions. Experientia 30:350CrossRefGoogle Scholar
  169. Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58(12):1009–1022CrossRefPubMedGoogle Scholar
  170. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9CrossRefPubMedGoogle Scholar
  171. Ngoufack FZ, El-Noda AN, Tchouanguep FM, El-Soda M (2004) Effect of ropy and capsular exopolysaccharides producing strain of Lactobacillus plantarum 162RM on characteristics and functionality of fermented milk and soft Kareish type cheese. Afr J Biotechnol 3:512–518CrossRefGoogle Scholar
  172. Nicolaus B, Kambourova M (2010) Oner ET (2010) Exopolyssacharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31(1):1145–1158CrossRefPubMedGoogle Scholar
  173. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–340PubMedPubMedCentralGoogle Scholar
  174. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of saltlake ecosystems. Hydrobiologia 466:61–72CrossRefGoogle Scholar
  175. Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7(April):1–17Google Scholar
  176. Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Ferti Soils 33:204–217CrossRefGoogle Scholar
  177. Patel S, Jinal HN, Amaresan N (2017) Biocatalysis and agricultural biotechnology isolation and characterization of drought resistance bacteria for plant growth promoting properties and their e ff ect on chilli ( Capsicum annuum ) seedling under salt stress. Biocatalysis and Agricultural Biotechnology 12:85–89Google Scholar
  178. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefPubMedGoogle Scholar
  179. Peng J, Wu D, Liang Y, Li L, Guo Y (2019) Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J Basic Microbiol 59(4):402–411CrossRefPubMedGoogle Scholar
  180. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15CrossRefPubMedGoogle Scholar
  181. Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693CrossRefPubMedPubMedCentralGoogle Scholar
  182. Pfeiffer CM, Bloss HE (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorous fertilization. New Phytol 108:315–343CrossRefGoogle Scholar
  183. Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36CrossRefPubMedPubMedCentralGoogle Scholar
  184. Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(7):1245–1259CrossRefPubMedGoogle Scholar
  185. Qurashi AW, Sabri AN (2012a) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 11:83–91Google Scholar
  186. Qurashi AW, Sabri AN (2012b) Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. J Basic Microbiol 52(5):566–572CrossRefPubMedGoogle Scholar
  187. Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179 1992Google Scholar
  188. Redman RS, Kim YO, Woodward CJDA, Chris G, Espino L, Doty SL et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823CrossRefPubMedPubMedCentralGoogle Scholar
  189. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069CrossRefPubMedGoogle Scholar
  190. Reed MLE, Glick BR (2013) Applications of plant growth-promoting bac- teria for plant and soil systems. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA (eds) Applications of Microbial Engineering. Taylor and Francis, Enfield, CT, pp 181–229Google Scholar
  191. Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145CrossRefGoogle Scholar
  192. Roberson E, Firestone M (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291PubMedPubMedCentralGoogle Scholar
  193. Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effect of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Sys 2:7CrossRefGoogle Scholar
  194. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  195. Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272CrossRefGoogle Scholar
  196. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefPubMedGoogle Scholar
  197. Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhiza (Glomus sp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ Exp Bot 31:313–318CrossRefGoogle Scholar
  198. Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260CrossRefPubMedGoogle Scholar
  199. Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359CrossRefGoogle Scholar
  200. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  201. Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73CrossRefPubMedGoogle Scholar
  202. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fert Soil 46:17–26CrossRefGoogle Scholar
  203. Salwan R, Rialch N, and Sharma V. (2018a) Bioactive volatile secondary metabolites of Trichoderma: Scope in agriculture Chapter 5 Secondary Metabolites of plant growth promoting rhizomicroorganisms: Discovery & Applications Page 87–111.
  204. Salwan R, Rialch N, and Sharma V. (2018b) Bioactive volatile secondary metabolites of Trichoderma: scope in agriculture chapter 5 secondary metabolites of plant growth promoting rhizomicroorganisms: Discovery ∓ Applications Page 87-111Google Scholar
  205. Sapre S, Sharma A, Tiwari S (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol 18:992–1000CrossRefPubMedGoogle Scholar
  206. Saravanakumar D, Samiyappan R (2007) Effects of 1-aminocyclo- propane-1-carboxylic acid (ACC) deaminase from Pseudomonas fluorescence against saline stress under in vitro and field conditions in groundnut (Arachis hypogeal) plants. J Appl Microbiol 102:1283–1292CrossRefPubMedGoogle Scholar
  207. Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soilless Ecol 23:237–244CrossRefGoogle Scholar
  208. Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018a) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32CrossRefPubMedGoogle Scholar
  209. Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018b) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32CrossRefPubMedGoogle Scholar
  210. Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287CrossRefPubMedGoogle Scholar
  211. Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405 T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960Google Scholar
  212. Schneider A (1892) Observations on some American rhizobia. Bull Torr Bot Club 19:203–218Google Scholar
  213. Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131(3):399–411CrossRefPubMedGoogle Scholar
  214. Shah S, Li J, Moffat BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can J Microbiol. 44:833–843CrossRefPubMedGoogle Scholar
  215. Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65CrossRefGoogle Scholar
  216. Shahid M, Khan MS (2019) Fungicide tolerant Bradyrhizobium japonicum mitigate toxicity and enhance greengram production under hexaconazole stress. J Environl Sci (China) 78:92–108CrossRefGoogle Scholar
  217. Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52(3):324–331Google Scholar
  218. Sharma V, Salwan R, Sharma PN (2016a) Differential response of extracellular proteases of Trichoderma Harzianum against fungal phytopathogens. Curr Microbiol 73(3):419–425CrossRefPubMedGoogle Scholar
  219. Sharma V, Salwan R, Sharma PN, Kanwar SS (2016b) Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int J Biol Macromol 92:615–624CrossRefPubMedGoogle Scholar
  220. Sharma V, Salwan R, Sharma PN (2017a) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:84–96CrossRefGoogle Scholar
  221. Sharma V, Salwan R, Sharma PN, Kanwar SS (2017b) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95:72–79CrossRefPubMedGoogle Scholar
  222. Sharma V, Salwan R, Shanmugam V (2018a) Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. Pest Biochem Physiol 149:73–80CrossRefGoogle Scholar
  223. Sharma V, Salwan R, Shanmugam V (2018b) Unraveling the multilevel aspects of least explored plant beneficial Trichoderma saturnisporum isolate GITX-Panog (C). Eur J Plant Pathol 152:169–183CrossRefGoogle Scholar
  224. Sheldrake AR (1979) Effect of osmotic stress on polar auxin transport in Avena mesocotyl sections. Planta 145:113–117CrossRefPubMedGoogle Scholar
  225. Shi DC, Wang DL (2005) Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant and Soilless 271:15–26CrossRefGoogle Scholar
  226. Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890PubMedPubMedCentralGoogle Scholar
  227. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191CrossRefPubMedPubMedCentralGoogle Scholar
  228. Smith PA (2014) Foliage friendships. Sci Am 311:24–25CrossRefPubMedGoogle Scholar
  229. Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591CrossRefPubMedGoogle Scholar
  230. Staudt A, Wolfe L, Shrout J (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194(3):197–206CrossRefPubMedGoogle Scholar
  231. Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47(2):103–117CrossRefGoogle Scholar
  232. Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–212CrossRefPubMedGoogle Scholar
  233. Szymanskaa S, Płociniczak T, Piotrowska-Seget Z, Złocha M, Ruppel S, Hrynkiewicz K (2016) Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 182:68–79CrossRefGoogle Scholar
  234. Tate RL (2000) Soil microbiology. John Wiley&Sons, New YorkGoogle Scholar
  235. Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:73–176CrossRefGoogle Scholar
  236. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol (New Rochelle NY) 2:194–208CrossRefGoogle Scholar
  237. Tisdall JM, Oadea JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  238. Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916CrossRefGoogle Scholar
  239. Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293CrossRefPubMedGoogle Scholar
  240. Upadhyaya H, Sahoo L, Kumar S (2013) Molecular physiology of osmotic stress in plants Springer 179–192.Google Scholar
  241. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. European J Plant Pathol 119:243–254CrossRefGoogle Scholar
  242. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Rev 62:504–544Google Scholar
  243. Vimal SR, Patel VK, Singh JS (2018) Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants. Ecological IndicatorsGoogle Scholar
  244. Virto I et al (2015) Soil degradation and soil quality in Western Europe: Current situation and future perspectives. MDPI Sustainability 7:313–365CrossRefGoogle Scholar
  245. Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863Google Scholar
  246. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391CrossRefPubMedGoogle Scholar
  247. Wang B, ULuttge RR (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52(365):2355–2365CrossRefPubMedGoogle Scholar
  248. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  249. Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381CrossRefPubMedGoogle Scholar
  250. Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The Rhizosphere. Wiley Interscience, Chichester, pp 59–97Google Scholar
  251. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108CrossRefGoogle Scholar
  252. Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer, Berlin, Heidelberg, pp 1–9CrossRefGoogle Scholar
  253. Xie H, PasternakJJ GBR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71CrossRefGoogle Scholar
  254. Yaish, Mahmoud W, Irin Antony, and Bernard R Glick (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix Dactylifera L.) and their potential role in salinity tolerance. Antonie van Leeuwenhoek 107(6): 1519–1532.Google Scholar
  255. Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Cons Res 3(4):316–323CrossRefGoogle Scholar
  256. Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177Google Scholar
  257. Yoolong S, Kruasuwan W, Thanh Phạm HT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2019) Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep 9(1):1275CrossRefPubMedPubMedCentralGoogle Scholar
  258. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant–Microbe Interact 25:139–150CrossRefPubMedGoogle Scholar
  259. Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance the role of rhizosphere microbes. Molecular Plant 6(2):242–245CrossRefPubMedGoogle Scholar
  260. Zhang J, Davies WJ (1991) Anti transpirant activity in xylem sap of maize plants. J Exp Bot 42:317–321CrossRefGoogle Scholar
  261. Zhang J, Tardieu F (1996) Relative contribution of apices and mature tissues to ABA synthesis in droughted maize root systems. Plant Cell Physiol 37:598–605CrossRefGoogle Scholar
  262. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744CrossRefPubMedGoogle Scholar
  263. Zhang S, Gan Y, Xu B (2019) Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol 19(1):22CrossRefPubMedPubMedCentralGoogle Scholar
  264. Zhou C, Li F, Xie Y, Zhu L, Xiao X, Ma Z, Wang J (2017) Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants. Plant Signal Behav 12(10):1367465CrossRefGoogle Scholar
  265. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev. Plant Biol 53:247–273CrossRefGoogle Scholar
  266. Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Richa SalwanCollege of Horticulture and ForestryHamirpurIndia
  2. 2.University Centre for Research and DevelopmentChandigarh UniversityPunjabIndia

Personalised recommendations