Advertisement

Genome-wide transcriptome profiling provides insights into the responses of maize (Zea mays L.) to diazotrophic bacteria

  • Pablo R. Hardoim
  • Thais L. G. de Carvalho
  • Helkin G. F. Ballesteros
  • Daniel Bellieny-RabeloEmail author
  • Cristian A. Rojas
  • Thiago M. Venancio
  • Paulo C. G. Ferreira
  • Adriana S. Hemerly
Regular Article
  • 10 Downloads

Abstract

Aims

We applied for the first time a high-throughput transcriptome approach to elucidate biochemical and physiological mechanisms controlling early events in the interaction between maize seedlings and different beneficial diazotrophic bacteria.

Methods

mRNA transcriptomes from maize (Zea mays L.) seedlings were characterized seven days after inoculation with Azospirillum brasilense sp245 and Herbaspirillum seropedicae HRC54. The expression profiles of selected genes were validated by quantitative reverse transcription–polymerase chain reaction analysis.

Results

Transcriptome profiling revealed a total of 764 and 3595 differentially expressed genes (DEGs) in maize when exclusively associated with A. brasilense and H. seropedicae, respectively, whereas 455 DEGs were shared by both treatments. Our results support the modulation of the host nitrogen metabolism and phytohormone responses by both diazotrophic bacteria as well as distinct activation of host immune responses.

Conclusions

Diazotrophic bacteria modulate maize metabolism, with some common responses to both beneficial bacteria, while others are specific to each bacterial species. This study provides a valuable contribution on how these beneficial bacteria might amend host metabolism to improve growth and fitness.

Keywords

Plant-microbe interactions RNA-seq Phytohormones Nitrogen metabolism Cell wall membrane receptors Cytoplasmic receptors 

Abbreviations

ABA

abscisic acid

ARF

auxin response factor

BRs

brassinosteroids

BES1

bri1-ems-suppressor 1

CC-NBS-LRR

coiled-coil receptor, nucleotide-binding sites, and leucine-rich repeated domains

CPM

counts per million

DAMPs

damage-associated molecular patterns

DAI

days after inoculation

DEGs

differentially expressed genes

ET

ethylene

GO

gene ontology

GAs

gibberellic acids

bHLH

basic helix-loop-helix

HB

homeobox domain

IAA

indole acetic acid

MIND

membrane-based interactome network database

MDS

multidimensional scaling

NR

nitrate reductase

NiR

nitrite reductase

NUE

nitrogen use efficiency

PRRs

pattern recognition receptors

PTI

pattern trigger immunity

qRT-PCR

quantitative reverse transcription–polymerase chain reaction

RLCKs

receptor-like cytoplasmic kinases

CRK

cysteine receptor-like kinase

RLK

receptor-like kinase

RPP

recognition peronospora parasítica

RNA-seq

rna-sequencing

SA

salicylic acid

TIR-NBS-LRR

toll and interleukin receptor, nucleotide-binding sites, and leucine-rich repeated domains

TFs

transcription factors

Notes

Acknowledgments

The research was supported by Instituto Nacional de Ciência de Tecnologia (INCT) in Biological Nitrogen Fixation, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Newton Fund grant (BB/N013476/1). PRH and HGFB were supported by CNPq posdoctoral and PhD fellowships, respectively. TLGC and CAR were supported by FAPERJ posdoctoral fellowships. ASH and PCGF receive support from a CNPq research grant.

Supplementary material

11104_2019_4193_MOESM1_ESM.xlsx (12 kb)
ESM 1 (XLSX 12.1 kb)
11104_2019_4193_MOESM2_ESM.docx (127 kb)
ESM 2 (DOCX 126 kb)
11104_2019_4193_MOESM3_ESM.xlsx (1.2 mb)
ESM 3 (XLSX 1271 kb)
11104_2019_4193_MOESM4_ESM.xlsx (137 kb)
ESM 4 (XLSX 136 kb)
11104_2019_4193_MOESM5_ESM.xlsx (69 kb)
ESM 5 (XLSX 68 kb)
11104_2019_4193_MOESM6_ESM.xlsx (56 kb)
ESM 6 (XLSX 56 kb)
11104_2019_4193_MOESM7_ESM.xlsx (90 kb)
ESM 7 (XLSX 89 kb)
11104_2019_4193_MOESM8_ESM.xlsx (70 kb)
ESM 8 (XLSX 69 kb)
11104_2019_4193_MOESM9_ESM.pdf (39 kb)
Fig. S1 Non-metric multidimensional scaling (MDS) ordination on RNA-seq library transcript abundance profiling of maize samples inoculated with Azospirillum brasilense (azos_in), Herbaspirillum seropedicae (herb_in) and mock-inoculated (uninoculated). (PDF 39 kb)
11104_2019_4193_MOESM10_ESM.pdf (603 kb)
Fig. S2 Functional multidimesional scatterplots of GO enriched terms for biological process (a and b) and molecular function (c and d). Functional enriched GO terms identified in maize DEGs repressed (a and c) and induced (b after inoculation with Herbaspirillum seropedicae were independently analyzed with AgriGO and summarized using REVIGO semantic similarity-based scatterplots. For each category, enriched GO terms are plotted after the redundancy removal of semantic similarities. Semantically similar GO terms remain close together in the plot. Bubble color indicates adjusted p value for the false discovery rates, whereas large bubble size indicates more frequency count of the GO term in the underlying GO database. (PDF 603 kb)
11104_2019_4193_MOESM11_ESM.pdf (374 kb)
Fig. S3 Mapman visualization of maize differentially expressed genes (DEGs) involved in biotic stress response when inoculated by both diazotrophic bacteria Azospirillum brasilense and Herbaspirillum seropedicae (a) or solely inoculated with A. brasilense (b) and H. seropedicae (c). Inoculated plants were compared to mock-inoculated plants and each block represents rescaled log2 ratios (red, induced; blue, repressed) of a specific DEG. (PDF 373 kb)
11104_2019_4193_MOESM12_ESM.pdf (61 kb)
Fig. S4 Schematic representation of maize differentially expressed genes (DEGs) involved in auxin and brassinosteroids (BRs) metabolism when induced (red colors) or repressed (blue colors) after inoculation with Herbaspirillum seropedicae (square) or common to Azospirillum brasilense and H. seropedicae (circle) datasets. The genes arf1 and arf7 encode auxin response factor enzymes, while gene br6ox1 encodes a protein involved in the biosynthesis of BRs and the bzr1 gene is a positive regulator of the BR signaling pathway. (PDF 60 kb)
11104_2019_4193_MOESM13_ESM.pdf (116 kb)
Fig. S5 Heatmap of transcription factor (TF) families from maize differentially expressed genes (DEGs) inoculated with diazotrophic bacteria Herbaspirillum seropedicae (Herb) and Azospirillum brasilense (Azos). Values are shown as log2 fold change related to mock-inoculated plants when induced (A) and repressed (B) by both diazotrophic bacteria, as well as induced (C) and repressed (D) in plants solely inoculated with H. seropedicae. The transcriptional regulatory families of AP2-EREBP, ethylene responsive factor; BES1, Brassinosteroids-related transcription factor; bHLH, basic Helix-Loop-Helix; C2C2, CONSTANS LIKE genes; MYB, Myb DNA-binding domain; ARF, Auxin Response Factor; HB, Homeobox KNOX1 KNOX2 domains; SBP, Squamosa promoter Binding Proteins domain; trihelix, helix-loop-helix-loop-helix; AUX_IAA, AUX_IAA domain; bZIP, basic region/leucine zipper motif; C2H2, zinc-finger domain; CCAAT, CBFB_NFYA CBFD_NFYB_HMF CCAAT-Dr1 NF-YB NF-YC domains; GNAT, Gcn5-related N-acetyltransferases; WRKY, WRKY domain; C3H, zf-CCCH domain; CAMTA, calmodulin binding transcription activators; orphans; PHD, plant homeodomain; SET, SET domain; SNF2, SNF2_N domain are shown. (PDF 115 kb)

References

  1. Amaral FP, Bueno JCF, Hermes VS, Arisi ACM (2014) Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae. Symbiosis 62:41–50CrossRefGoogle Scholar
  2. Ashfield T, Ong LE, Nobuta K, Schneider CM, Innes RW (2004) Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16:309–318CrossRefGoogle Scholar
  3. Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579CrossRefGoogle Scholar
  4. Baldani J, Caruso L, Baldani VL et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  5. Bartel B, Fink GR (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745–1748CrossRefGoogle Scholar
  6. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521–577CrossRefGoogle Scholar
  7. Bastián F, Cohen A, Piccoli P, Luna V, Bottini* R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  8. Benschop JJ, Mohammed S, O’Flaherty M et al (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214CrossRefGoogle Scholar
  9. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209CrossRefGoogle Scholar
  10. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefGoogle Scholar
  11. Botta AL, Santacecilia A, Ercole C, Cacchio P, del Gallo M (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol 30:666–674CrossRefGoogle Scholar
  12. Brandt R, Cabedo M, Xie Y, Wenkel S (2014) Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment. J Integr Plant Biol 56:518–526CrossRefGoogle Scholar
  13. Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA, Pedrosa FO, Souza EM, Wassem R (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356:113–125CrossRefGoogle Scholar
  14. Brusamarello-Santos LC, Gilard F, Brulé L et al (2017) Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PloS one 12:e0174576.  https://doi.org/10.1371/journal.pone.0174576
  15. Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957CrossRefGoogle Scholar
  16. Canellas LP, Balmori DM, Médici LO, Aguiar NO, Campostrini E, Rosa RCC, Façanha AR, Olivares FL (2013) A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366:119–132CrossRefGoogle Scholar
  17. Carvalho TLG, Ballesteros HGF, Thiebaut F, Ferreira PCG, Hemerly AS (2016) Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Mol Biol 90:561–574CrossRefGoogle Scholar
  18. Castillo P, Molina R, Andrade A, Vigliocco A, Alemano S, Cassán FD (2015) Phytohormones and other plant growth regulators produced by pgpr: the genus Azospirillum. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 115–138Google Scholar
  19. Cavalcante JJV, Vargas C, Nogueira EM et al (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686CrossRefGoogle Scholar
  20. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303CrossRefGoogle Scholar
  21. Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3–MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587:1773–1778CrossRefGoogle Scholar
  22. da Fonseca Breda FA, da Silva TFR, dos Santos SG et al (2018) Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Arch Microbiol 201:547–558CrossRefGoogle Scholar
  23. Da K, Nowak J, Flinn B (2012) Potato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJN. Plant Physiol Biochem 50:24–34CrossRefGoogle Scholar
  24. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833CrossRefGoogle Scholar
  25. Davies PJ (2005) Plant hormones: biosynthesis, signal transduction, action. Springer NetherlandsGoogle Scholar
  26. Díaz-Zorita M, Canigia MVF, Bravo OÁ et al (2015) Field evaluation of extensive crops inoculated with Azospirillum sp. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 435–445Google Scholar
  27. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136CrossRefGoogle Scholar
  28. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162CrossRefGoogle Scholar
  29. Doerks T, Copley R, Bork P (2001) DDT–a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci 26:145–146CrossRefGoogle Scholar
  30. Du L, Ali GS, Simons KA et al (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158CrossRefGoogle Scholar
  31. Du Z, Zhou X, Ling Y et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70.  https://doi.org/10.1093/nar/gkq310 CrossRefGoogle Scholar
  32. Dubois M, van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323CrossRefGoogle Scholar
  33. Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23:2715–2723CrossRefGoogle Scholar
  34. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186.  https://doi.org/10.1093/nar/gkr944 CrossRefGoogle Scholar
  35. Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194CrossRefGoogle Scholar
  36. Gutiérrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7.  https://doi.org/10.1186/gb-2007-8-1-r7 CrossRefGoogle Scholar
  37. Halbach T, Scheer N, Werr W (2000) Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res 28:3542–3550CrossRefGoogle Scholar
  38. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefGoogle Scholar
  39. He J-X, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638CrossRefGoogle Scholar
  40. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agr Exp St a Cir 347:1–32Google Scholar
  41. Hu H-C, Wang Y-Y, Tsay Y-F (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278CrossRefGoogle Scholar
  42. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  43. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111CrossRefGoogle Scholar
  44. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906CrossRefGoogle Scholar
  45. Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064CrossRefGoogle Scholar
  46. Jiang Z, Liu X, Peng Z et al (2010) AHD2. 0: an update version of Arabidopsis hormone database for plant systematic studies. Nucleic Acids Res 39:D1123–D1129CrossRefGoogle Scholar
  47. Jin J, Tian F, Yang D-C et al (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045CrossRefGoogle Scholar
  48. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefGoogle Scholar
  49. Jones AM, Xuan Y, Xu M, Wang RS, Ho CH, Lalonde S, You CH, Sardi MI, Parsa SA, Smith-Valle E, Su T, Frazer KA, Pilot G, Pratelli R, Grossmann G, Acharya BR, Hu HC, Engineer C, Villiers F, Ju C, Takeda K, Su Z, Dong Q, Assmann SM, Chen J, Kwak JM, Schroeder JI, Albert R, Rhee SY, Frommer WB (2014) Border control—a membrane-linked interactome of Arabidopsis. Science 344:711–716CrossRefGoogle Scholar
  50. Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887CrossRefGoogle Scholar
  51. Kechid M, Desbrosses G, Rokhsi W, Varoquaux F, Djekoun A, Touraine B (2013) The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytol 198:514–524CrossRefGoogle Scholar
  52. Kiełbowicz-Matuk A (2012) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 185:78–85CrossRefGoogle Scholar
  53. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36.  https://doi.org/10.1186/gb-2013-14-4-r36 CrossRefGoogle Scholar
  54. Le MH, Cao Y, Zhang X-C, Stacey G (2014) LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis. PLoS One 9:e102245.  https://doi.org/10.1371/journal.pone.0102245 CrossRefGoogle Scholar
  55. Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C, Toth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci 107:2343–2348CrossRefGoogle Scholar
  56. Lezhneva L, Kiba T, Feria-Bourrellier A-B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A (2014) The Arabidopsis nitrate transporter NRT 2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80:230–241CrossRefGoogle Scholar
  57. Lin W, Okon Y, Hardy RW (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779Google Scholar
  58. Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86:543–554.  https://doi.org/10.1007/s11103-014-0246-1 CrossRefGoogle Scholar
  59. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  60. Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63:393–401CrossRefGoogle Scholar
  61. Lozano-Durán R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C (2013) The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. Elife 2:e00983.  https://doi.org/10.7554/eLife.00983 CrossRefGoogle Scholar
  62. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact 24:183–193CrossRefGoogle Scholar
  63. Luo J, Zhou J, Li H, Shi W, Polle A, Lu M, Sun X, Luo ZB (2015) Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol 35:1283–1302CrossRefGoogle Scholar
  64. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272CrossRefGoogle Scholar
  65. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297CrossRefGoogle Scholar
  66. Meyer J, Berger DK, Christensen SA, Murray SL (2017) RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biol 17:197.  https://doi.org/10.1186/s12870-017-1137-9 CrossRefGoogle Scholar
  67. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15:809–834CrossRefGoogle Scholar
  68. Müller B (2016) Characterization of UmamiTs in Arabidopsis: amino acid transporters involved in amino acid cycling, phloem unloading and the supply of symplasmically isolated sink tissuesGoogle Scholar
  69. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432CrossRefGoogle Scholar
  70. Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130CrossRefGoogle Scholar
  71. Oliveira A, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  72. Oliveira IJ, Fontes JRA, Pereira BFF, Muniz AW (2018) Inoculation with Azospirillum brasiliense increases maize yield. Chem Biol Technol Agric 5:6.  https://doi.org/10.1186/s40538-018-0118-z CrossRefGoogle Scholar
  73. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul ANG, Soares MAM, Gasques LS, Gimenes CCT, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SMA, Rocha CLMSC, Arantes OMN, Furlaneto MC, Godoy LP, Oliveira CEC, Satori D, Vilas-Boas LA, Watanabe MAE, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barcellos FG, Campo RJ, Chueire LMO, Nicolás MF, Pereira-Ferrari L, da Conceição Silva JL, Gioppo NMR, Margarido VP, Menck-Soares MA, Pinto FGS, Simão RCG, Takahashi EK, Yates MG, Souza EM (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064.  https://doi.org/10.1371/journal.pgen.1002064 CrossRefGoogle Scholar
  74. Pérez-Rodríguez P, Riano-Pachon DM, Corrêa LGG et al (2009) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827.  https://doi.org/10.1093/nar/gkp805 CrossRefGoogle Scholar
  75. Peterson KM, Shyu C, Burr CA, Horst RJ, Kanaoka MM, Omae M, Sato Y, Torii KU (2013) Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development. 140:1924–1935.  https://doi.org/10.1242/dev.090209 CrossRefGoogle Scholar
  76. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415CrossRefGoogle Scholar
  77. Pontier D, Picart C, Roudier F, Garcia D, Lahmy S, Azevedo J, Alart E, Laudié M, Karlowski WM, Cooke R, Colot V, Voinnet O, Lagrange T (2012) NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol Cell 48:121–132CrossRefGoogle Scholar
  78. Presti L, Lanver D, Schweizer G et al (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545CrossRefGoogle Scholar
  79. Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23:833–844CrossRefGoogle Scholar
  80. Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A, Parker JE, Teige M, Scherer GFE (2010) Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant 3:524–538CrossRefGoogle Scholar
  81. Ristova D, Carré C, Pervent M et al (2016) Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 9:rs13–rs13CrossRefGoogle Scholar
  82. Rivera D, Revale S, Molina R et al (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2:e00683–14–e00683–14.  https://doi.org/10.1128/genomeA.00683-14 CrossRefGoogle Scholar
  83. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefGoogle Scholar
  84. Rodrigues CM, de Souza AA, Takita MA, Kishi LT, Machado MA (2013) RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BMC Genomics 14:676.  https://doi.org/10.1186/1471-2164-14-676 CrossRefGoogle Scholar
  85. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258CrossRefGoogle Scholar
  86. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078CrossRefGoogle Scholar
  87. Sasse J, Martinoia E, Northern T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41CrossRefGoogle Scholar
  88. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587.  https://doi.org/10.1186/2193-1801-2-587 CrossRefGoogle Scholar
  89. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456CrossRefGoogle Scholar
  90. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800.  https://doi.org/10.1371/journal.pone.0021800 CrossRefGoogle Scholar
  91. Tatis PAD, Corzo MH, Cabezas JCO et al (2018) The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta 247:1031–1042CrossRefGoogle Scholar
  92. Thiebaut F, Rojas CA, Grativol C, Motta M, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, Ferreira PCG (2014) Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics 15:766.  https://doi.org/10.1186/1471-2164-15-766 CrossRefGoogle Scholar
  93. Tortora ML, Díaz-Ricci JC, Pedraza RO (2012) Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 356:279–290CrossRefGoogle Scholar
  94. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578CrossRefGoogle Scholar
  95. Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85.  https://doi.org/10.3389/fpls.2012.00085 CrossRefGoogle Scholar
  96. Vargas L, de Carvalho TLG, Ferreira PCG, Baldani VLD, Baldani JI, Hemerly AS (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356:127–137CrossRefGoogle Scholar
  97. Vibhuti M, Kumar A, Sheoran N, Nadakkakath AV, Eapen SJ (2017) Molecular basis of endophytic Bacillus megaterium induced growth promotion in Arabidopsis thaliana: revelation by microarray-based gene expression analysis. J Plant Growth Regul 36:118–130CrossRefGoogle Scholar
  98. Wang F, Kong W, Wong G, Fu L, Peng R, Li Z, Yao Q (2016) AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Gen Genomics 291:1545–1559CrossRefGoogle Scholar
  99. Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, González V, Mavingui P (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes 3:576–602CrossRefGoogle Scholar
  100. Yamaguchi K, Yamada K, Kawasaki T (2013) Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity. Plant Signal Behav 8:e25662.  https://doi.org/10.4161/psb.25662 CrossRefGoogle Scholar
  101. Yang H, Bogner M, Stierhof Y-D, Ludewig U (2010) H+-independent glutamine transport in plant root tips. PLoS One 5:e8917.  https://doi.org/10.1371/journal.pone.0008917 CrossRefGoogle Scholar
  102. Yang K, Qi L, Zhang Z (2014) Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum). Crop J 2:255–266CrossRefGoogle Scholar
  103. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo R. Hardoim
    • 1
  • Thais L. G. de Carvalho
    • 1
    • 2
  • Helkin G. F. Ballesteros
    • 1
  • Daniel Bellieny-Rabelo
    • 3
    • 4
    Email author
  • Cristian A. Rojas
    • 5
  • Thiago M. Venancio
    • 3
  • Paulo C. G. Ferreira
    • 1
  • Adriana S. Hemerly
    • 1
  1. 1.Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Biologia Molecular de PlantasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de BiologiaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Centro de Biociências e Biotecnologia, Laboratório de Química e Função de Proteínas e PeptídeosUniversidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil
  4. 4.Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
  5. 5.Universidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil

Personalised recommendations