Advertisement

Plant and Soil

, Volume 442, Issue 1–2, pp 79–96 | Cite as

Effects of litter mixing on litter decomposition and soil properties along simulated invasion gradients of non-native trees

  • Pilar Castro-DíezEmail author
  • Álvaro Alonso
  • Alberto Romero-Blanco
Regular Article

Abstract

Aims

Plant invasions generally lead to mixtures between native and non-native litter. We assess the interactions between leaf litters from two invasive non-native trees (Robinia pseudoacia or Ailanthus altissima) and the native Populus alba on litter decomposition, nutrient release and soil properties along two gradients of invasion.

Methods

Microcosms with field-collected soil covered by varying proportions of native and non-native litter simulated the two invasion gradients. We assessed the proportion of remaining litter mass and nutrient mass (N, P, C), and soil C, N-NO3, total N, and pH, five times throughout a period of 11 months. Observed values were compared to the expected values on the assumption of no interactions.

Results

Litter mass and C mass decayed slower in Robinia and faster in Ailanthus than in Populus. The three species immobilized N and P. Soil properties did not differ across pure litters. Both litter mixture gradients showed additive or antagonistic interactions on litter decomposition, whereas N and P mass were equal or higher than expected. The proportion of non-native litter in the mixture had non-linear effects on most variables, suggesting that the impact of these non-native trees on litter decay levels off or even declines as they become more abundant.

Conclusion

The impacts of Ailanthus and Robinia litter on soil processes should not be derived from single species experiments, both due to non-additive effects and to non-linear responses to litter abundance.

Keywords

Invasive trees Litter decomposition Litter properties Non-additive effects Per-capita impact Soil properties 

Notes

Acknowledgements

This work was supported by the IMPLANTIN (CGL2015-65346-R) and EXARBIN (RTI2018-093504-B-I00) projects of the Ministerio de Ciencia, Innovación y Universidadades of Spain, and the REMEDINAL TE-CM S2018/EMT-4338 network (Comunidad de Madrid). We acknowledge José Sanchez for his work in the laboratory and Professor Antonio Gallardo for reviewing the first draft of the manuscript.

Supplementary material

11104_2019_4160_MOESM1_ESM.docx (3 mb)
ESM 1 (DOCX 3027 kb)

References

  1. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449.  https://doi.org/10.2307/3546886 CrossRefGoogle Scholar
  2. Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology, 2nd edn. Blackwell Sci. Pub, Oxford, pp 285–344Google Scholar
  3. Alonso A, González-Muñoz N, Castro-Díez P (2010) Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol Res 25:647–653.  https://doi.org/10.1007/s11284-010-0698-y CrossRefGoogle Scholar
  4. Basnou C (2009) Robinia pseudoacacia L., black locust (Fabaceae, Magnolipphyta). In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer Publishers, p 357Google Scholar
  5. Basnou C, Vilà M (2009) Ailanthus altissima (mill.) Swingle, tree of heaven (Simabouraceae, Magnoliphyta). In: DAISIE (ed) Handbook of alien species in Europe, vol 3. Springer Publishers, p 342Google Scholar
  6. Berendse F, Bobbink R, Rouwenhorst G (1989) A comparative study on nutrient cycling in wet heathland ecosystems : II. Litter decomposition and nutrient mineralization. Oecologia 78:338–348.  https://doi.org/10.1007/BF00379107 CrossRefPubMedGoogle Scholar
  7. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22.  https://doi.org/10.1016/s0378-1127(99)00294-7 CrossRefGoogle Scholar
  8. Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types - long-term decomposition in a scots pine forest. 7. Can J Bot 69:1449–1456.  https://doi.org/10.1139/b91-187 CrossRefGoogle Scholar
  9. Berg B, McClaugherty C (2014) Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin-Heidelberg.  https://doi.org/10.1007/978-3-642-38821-7 CrossRefGoogle Scholar
  10. Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659.  https://doi.org/10.1007/s00442-006-0402-7 CrossRefPubMedGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New YorkGoogle Scholar
  12. Cabra-Rivas I, Castro-Díez P (2016) Comparing the sexual reproductive success of two exotic trees invading Spanish riparian forests vs. a native reference. PLoS One 11:e0160831.  https://doi.org/10.1371/journal.pone.0160831 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castro-Díez P, Alonso A (2017) Effects of non-native riparian plants in riparian and fluvial ecosystems: a review for the Iberian Peninsula. Limnetica 36:525–541.  https://doi.org/10.23818/limn.36.19 CrossRefGoogle Scholar
  14. Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasions 11:1973–1986.  https://doi.org/10.1007/s10530-008-9374-3 CrossRefGoogle Scholar
  15. Castro-Díez P, Fierro-Brunnenmeister N, Gonzalez-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191.  https://doi.org/10.1007/s11104-011-0893-9 CrossRefGoogle Scholar
  16. Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A (2014a) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12.  https://doi.org/10.1111/ele.12197 CrossRefPubMedGoogle Scholar
  17. Castro-Díez P, Valle G, González-Muñoz N, Alonso A (2014b) Can the life-history strategy explain the success of the exotic trees Ailanthus altissima and Robinia pseudoacacia in Iberian floodplain forests? PLoS One 9:e100254.  https://doi.org/10.1371/journal.pone.0100254 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Castro-Díez P, Pauchard A, Traveset A, Vilá M (2016) Linking the impacts of plant invasion on community functional structure and ecosystem properties. J Veg Sci 27:1233–1242.  https://doi.org/10.1111/jvs.12429 CrossRefGoogle Scholar
  19. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40CrossRefGoogle Scholar
  20. Catford JA, Downes BJ, Gippel CJ, Vesk PA (2011) Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J Appl Ecol 48:432–442.  https://doi.org/10.1111/j.1365-2664.2010.01945.x CrossRefGoogle Scholar
  21. Chapin FS, Reynolds H, D'Antonio CM, Eckhart V (1996) The functional role of species in terrestrial ecosystems. In: Walker B, Steffen W (eds) Global change in terrestrial ecosystems. Cambridge University Press, pp 403–428Google Scholar
  22. Chen B-M, Peng S-L, D’Antonio CM, Li D-J, Ren W-T (2013) Non-additive effects on decomposition from mixing litter of the invasive Mikania micrantha H.B.K. with native plants. PLoS One 8:e66289.  https://doi.org/10.1371/journal.pone.0066289 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, M S S (2008) Habitat invasions by alien plants: a quantitative comparison between Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458.  https://doi.org/10.1111/j.1365-2664.2007.01398.x CrossRefGoogle Scholar
  24. Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013) Biological Flora of the British Isles: Robinia pseudoacacia. J Ecol 101:1623–1640.  https://doi.org/10.1111/1365-2745.12162 CrossRefGoogle Scholar
  25. D’Antonio CM, Corbin JD (2003) Effects of plant invaders on nutrient cycling: Using models to explore the link between invasion and development of species effects. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in Ecosystem Science. Princeton University Press, Princeton (NJ), pp 363–384Google Scholar
  26. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cyling processes. Ecosystems 6:503–523.  https://doi.org/10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  27. Ehrenfeld JG, Scott N (2001) Invasive species and the soil: effects on organisms and ecosystem processes. Ecol Appl 11:1259–1260.  https://doi.org/10.1890/1051-0761(2001)011[1259:Isatse]2.0.Co;2 CrossRefGoogle Scholar
  28. Elgersma KJ, Ehrenfeld JG (2011) Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol Invasions 13:757–768.  https://doi.org/10.1007/s10530-010-9866-9 CrossRefGoogle Scholar
  29. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO and IIASA, Rome, Italy. Laxenburg, AustriaGoogle Scholar
  30. Gallardo A, Merino J (1992) Nitrogen inmobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213–228CrossRefGoogle Scholar
  31. Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: influence of substrate quality. Ecology 74:152–161CrossRefGoogle Scholar
  32. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246.  https://doi.org/10.1111/j.0030-1299.2004.12738.x CrossRefGoogle Scholar
  33. Godoy O, Castro-Díez P, Van Logtestijn RS, Cornelissen JH, Valladares F (2010) Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison. Oecologia 162:781–790.  https://doi.org/10.1007/s00442-009-1512-9 CrossRefPubMedGoogle Scholar
  34. González-Muñoz N, Castro-Díez P, Parker IM (2013) Differences in nitrogen use between native and exotic tree species: predicting impacts on invaded ecosystems. Plant Soil 363:319–329.  https://doi.org/10.1007/s11104-012-1329-x CrossRefGoogle Scholar
  35. Gutiérrez-López M, Ranera E, Novo M, Fernández R, Trigo D (2014) Does the invasion of the exotic tree Ailanthus altissima affect the soil arthropod community? The case of a riparian forest of the Henares River (Madrid). Eur J Soil Biol 62:39–48.  https://doi.org/10.1016/j.ejsobi.2014.02.010 CrossRefGoogle Scholar
  36. Hattenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. PNAS 102:1519–1524.  https://doi.org/10.1073/pnas.0404977102 CrossRefPubMedGoogle Scholar
  37. Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243.  https://doi.org/10.1016/S0169-5347(00)01861-9 CrossRefPubMedGoogle Scholar
  38. Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition interrestrial ecosystems. Annu Rev Ecol Evol S 36:191–218.  https://doi.org/10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  39. Hickman JE, Ashton IW, Howe KM, Lerdau MT (2013) The native-invasive balance: implications for nutrient cycling in ecosystems. Oecologia 173:319–328.  https://doi.org/10.1007/s00442-013-2607-x CrossRefPubMedGoogle Scholar
  40. Hood WG, Naiman RJ (2000) Vulnerability of riparian zones to invasion by exotic vascular plants. Plant Ecol 148:105–114.  https://doi.org/10.1023/a:1009800327334 CrossRefGoogle Scholar
  41. Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137:578–586.  https://doi.org/10.1007/s00442-003-1365-6 CrossRefPubMedGoogle Scholar
  42. Hulme PE, Pyšek P, Jarošik V, Pergl J, Schaffner U, Vilà M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218.  https://doi.org/10.1016/j.tree.2012.10.010 CrossRefPubMedGoogle Scholar
  43. Incerti G, Carteni F, Cesarano G, Sarker TC, Abd El-Gawad AM, D'Ascoli R, Bonanomi G, Giannino F (2018) Faster N release, but not C loss, from leaf litter of invasives compared to native species in Mediterranean ecosystems. Front Plant Sci 9:12.  https://doi.org/10.3389/fpls.2018.00534 CrossRefGoogle Scholar
  44. Jo I, Fridley JD, Frank DA (2016) More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species. New Phytol 209:115–122.  https://doi.org/10.1111/nph.13619 CrossRefPubMedGoogle Scholar
  45. Keith AM, Brooker RW, Osler GHR, Chapman SJ, Burslem D, van der Wal R (2009) Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol Biochem 41:1060–1065.  https://doi.org/10.1016/j.soilbio.2009.02.009 CrossRefGoogle Scholar
  46. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245.  https://doi.org/10.1111/j.1461-0248.2009.01418.x CrossRefPubMedGoogle Scholar
  47. Kourtev PS, Ehrenfeld JG, Haggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166.  https://doi.org/10.2307/3071850 CrossRefGoogle Scholar
  48. Kowarik I, Saumel I (2007) Biological flora of Central Europe: Ailanthus altissima (mill.) Swingle. Perspect Plant Ecol 8:207–237.  https://doi.org/10.1016/j.ppees.2007.03.002 CrossRefGoogle Scholar
  49. Lara F, Garillete R, Ramírez P (1996) Estudio de la vegetación de los ríos carpetanos de la cuenca del Jarama. Centro de Estudios y Experimentación de Obras Públicas. Ministerio de Fomento, MadridGoogle Scholar
  50. Lecerf A, Marie G, Kominoski JS, LeRoy CJ, Bernadet C, Swan CM (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169.  https://doi.org/10.1890/10-0315.1 CrossRefPubMedGoogle Scholar
  51. Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714.  https://doi.org/10.1111/j.1469-8137.2007.02290.x CrossRefPubMedGoogle Scholar
  52. Mack MC, D'Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C4 grasses in Hawaii. Ecol Appl 11:1323–1335.  https://doi.org/10.2307/3060923 CrossRefGoogle Scholar
  53. Marchante E, Kjoller A, Struwe S, Freitas H (2008) Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl Soil Ecol 40:210–217CrossRefGoogle Scholar
  54. Marchante E, Marchante H, Freitas H, Kjøller A, Struwe S (2019) Decomposition of an N-fixing invasive plant compared with a native species: consequences for ecosystem. Appl Soil Ecol 138:19–31.  https://doi.org/10.1016/j.apsoil.2019.02.016 CrossRefGoogle Scholar
  55. Maron JL, Marler M (2008) Effects of native species diversity and resource additions on invader impact. Am Nat 172:S18–S33.  https://doi.org/10.1086/588303 CrossRefPubMedGoogle Scholar
  56. McArthur JV, Aho JM, Rader RB, Mills GL (1994) Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J N Am Benthol Soc 13:57–67.  https://doi.org/10.2307/1467265 CrossRefGoogle Scholar
  57. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538.  https://doi.org/10.2307/3545614 CrossRefGoogle Scholar
  58. Medina-Villar S, Alonso A, de Aldana BRV, Perez-Corona E, Castro-Díez P (2015a) Decomposition and biological colonization of native and exotic leaf litter in a Central Spain stream. Limnetica 34:293–309Google Scholar
  59. Medina-Villar S, Castro-Díez P, Alonso A, Cabra-Rivas I, Parker IM, Pérez-Corona E (2015b) Do the invasive trees, Ailanthus altissima and Robinia pseudoacacia, alter litterfall dynamics and soil properties of riparian ecosystems in cental Spain? Plant Soil 396:311–324.  https://doi.org/10.1007/s11104-015-2592-4 CrossRefGoogle Scholar
  60. Medina-Villar S, Rodríguez-Echeverría S, Lorenzo P, Alonso A, Pérez-Corona E, Castro-Díez P (2016) Impacts of the alien trees Ailanthus altissima (mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biol Biochem 96:65–73.  https://doi.org/10.1016/j.soilbio.2016.01.015 CrossRefGoogle Scholar
  61. Muñoz Vallés S, B. Gallego Fernández J, Dellafiore C, Cambrollé J (2011) Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecol 212:169–179. doi: https://doi.org/10.1007/s11258-010-9812-z
  62. Nilsson MC, Wardle DA, Dahlberg A (1999) Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16–26.  https://doi.org/10.2307/3546566 CrossRefGoogle Scholar
  63. Parker IM, Simberloff D, Londsale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19CrossRefGoogle Scholar
  64. Pollierer MM, Langel R, Korner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736.  https://doi.org/10.1111/j.1461-0248.2007.01064.x CrossRefPubMedGoogle Scholar
  65. Prada MA, Arizpe D (eds) (2008) Riparian tree and shrub propagation handbook. An aid to riverine restoration in the Mediterranean region. Generalitat Valenciana, ValenciaGoogle Scholar
  66. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological Invasions. Ecological Studies, vol 193. Springer-Verlag, Berlin Heidelberg, pp 97–125CrossRefGoogle Scholar
  67. Pyšek P, Jarošik V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Glob Chang Biol 18:1725–1737.  https://doi.org/10.1111/j.1365-2486.2011.02636.x CrossRefPubMedCentralGoogle Scholar
  68. Quested JM, Press MC, Callaghan TV, Cornelissen HC (2002) The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-artic communities. Oecologia 130:88–95.  https://doi.org/10.1007/s004420100780 CrossRefPubMedGoogle Scholar
  69. Sanz Elorza M, Dana Sánchez ED, Sobrino Vesperinas E (2004) Atlas de las plantas alóctonas invasoras en España. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, MadridGoogle Scholar
  70. Scowcroft PG (1997) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407–426.  https://doi.org/10.1017/S0266467400010592 CrossRefGoogle Scholar
  71. Sofaer HR, Jarnevich CS, Pearse IS (2018) The relationship between invader abundance and impact. Ecosphere 9:13.  https://doi.org/10.1002/ecs2.2415 CrossRefGoogle Scholar
  72. Sparling G, Whale K, Ramsay A (1985) Quantifying the contribution from the soil microbail biomass to the extractable P levels of fresh and air-dried soils. Aust J Soil Res 23:613–621CrossRefGoogle Scholar
  73. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651.  https://doi.org/10.1016/j.tree.2006.07.007 CrossRefGoogle Scholar
  74. Sun S-Q, Cai H-Y, Chang SX, Bhatti JS (2015) Sample storage-induced changes in the quantity and quality of soil labile organic carbon. Sci Rep 5:17496–17496.  https://doi.org/10.1038/srep17496 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tabacchi E, Planty-Tabacchi AM, Roques L, Nadal E (2005) Seed inputs in riparian zones: implications for plant invasion. River Res Appl 21:299–313CrossRefGoogle Scholar
  76. Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue ZD, Wang SQ, Hou QC (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan'an on the loess plateau, China. For Ecol Manag 241:84–90.  https://doi.org/10.1016/j.foreco.2006.12.026 CrossRefGoogle Scholar
  77. Thiele J, Kollmann J, Markussen B, Otte A (2010) Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biol Invasions 12:2025–2035.  https://doi.org/10.1007/s10530-009-9605-2 CrossRefGoogle Scholar
  78. Tickner DP, Angold PG, Gurnell AM, Mountford JO (2001) Riparian plant invasions: hydrogeomorphological control and ecological impacts. Prog Phys Geogr 25:22–52.  https://doi.org/10.1177/030913330102500102 CrossRefGoogle Scholar
  79. Vilà M, García-Berthou E, Sol D, Pino J (2001) Survey of the naturalized plants and vertebrates in peninsular Spain. Ecologia Mediterranea 27:55–67.  https://doi.org/10.2307/1942601 CrossRefGoogle Scholar
  80. Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nutrient fixation, ecosystem effects. Ecol Monogr 59:247–265CrossRefGoogle Scholar
  81. Vogt K (1991) Carbon budgets of temperate forest ecosystems. Tree Physiol 9:69–86.  https://doi.org/10.1093/treephys/9.1-2.69 CrossRefPubMedGoogle Scholar
  82. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258.  https://doi.org/10.2307/3546010 CrossRefGoogle Scholar
  83. Yokomizo H, Possingham HP, Thomas MB, Buckley YM (2009) Managing the impact of invasive species: the value of knowing the density-impact curve. Ecol Appl 19:376–386.  https://doi.org/10.1890/08-0442.1 CrossRefPubMedGoogle Scholar
  84. Zhang L, Zhang YJ, Zou JW, Siemann E (2014) Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect. Sci Rep 4(8).  https://doi.org/10.1038/srep05488

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias de la Vida, Facultad de CienciasUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations