Advertisement

Unravelling soil and plant metal relationships in Albanian nickel hyperaccumulators in the genus Odontarrhena (syn. Alyssum sect. Odontarrhena, Brassicaceae)

  • Isabella Bettarini
  • Ilaria Colzi
  • Andrea Coppi
  • Sara Falsini
  • Guillaume Echevarria
  • Luigia Pazzagli
  • Federico Selvi
  • Cristina GonnelliEmail author
Regular Article
  • 62 Downloads

Abstract

Aims

Based on a recent taxonomic revision of the genus Odontarrhena in Albania, our work aimed at comparing the taxa and populations of this genus in terms of nickel accumulation and levels of other metals in relation to their concentrations in the soil at distinct Albanian ultramafic outcrops.

Methods

Several populations of different Odontarrhena species were sampled from 20 different outcrops across the entire Albanian territory. Concentrations of Ni, Co, Cr, Mg, Ca, K, Fe and Mn were determined in soil, roots and shoots of all specimens sampled.

Results

Ultramafic soils across Albania showed variable metal composition, with significant differences between sites. Large differences in mineral element concentrations were also found between the plants which were not related to species identity or geographical distribution of their populations.

Conclusions

Shoot Ni concentrations in Albanian Odontarrhena taxa depend on soil Ni concentrations but not on species identity. For O. chalcidica, the more widely distributed species, the environmental fingerprint for shoot metal composition was found not only for Ni, but also for Ca and Mg, the latter showing a positive linear relationship between soil and plant concentrations.

Keywords

Trace metals Hyperaccumulation Variability Alyssum Serpentine Balkans 

Notes

Acknowledgments

This study was carried out in the framework of Agronickel (ERA-NET Cofund-supported FACCE SURPLUS project). We thank Professor Alan Baker (Universities of Melbourne and Queensland, Australia) for his help in improving the text of this paper.

Supplementary material

11104_2019_4077_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 45 kb)

References

  1. Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  2. Bani A, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2009) Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeast Nat 16(Special Issue 5):385–404CrossRefGoogle Scholar
  3. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by species of Alyssum and Thlaspi (Brassicaceae) from ultramafic soils of the Balkans. Bot Serbica 34(1):3–14Google Scholar
  4. Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801Google Scholar
  5. Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot MO (2015) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77CrossRefGoogle Scholar
  6. Bani A, Echevarria G, Pavlova D, Shallari S, Morel JL, Sulçe S (2018) Element Case Studies: Nickel. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 221–232CrossRefGoogle Scholar
  7. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  8. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  9. Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F (2010) Evolutionary lineages of Ni-hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Ann Bot 106:751–767CrossRefGoogle Scholar
  10. Cecchi L, Bettarini I, Colzi I, Coppi A, Echevarria G, Pazzagli L, Bani A, Gonnelli C, Selvi F (2018) The genus Odontarrhena (Brassicaceae) in Albania: taxonomy and nickel accumulation in a critical group of metallophytes from a major serpentine hot-spot. Phytotaxa 351(1):1–28CrossRefGoogle Scholar
  11. Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg JR, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and cd. Z Naturforsch 60C:190–198Google Scholar
  12. Deng THB, van der Ent A, Tang YT, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2018) Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423:1–11CrossRefGoogle Scholar
  13. Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20CrossRefGoogle Scholar
  14. Galardi F, Mengoni A, Pucci S, Barletti L, Massi L, Barzanti R, Gabbrielli R, Gonnelli C (2007) Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: a survey of populations in nature. Environ Exp Bot 60:50–56CrossRefGoogle Scholar
  15. Gonnelli C, Renella G (2012) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. Springer, Dordrecht, pp 313–333Google Scholar
  16. Hartvig P (2002) Alyssum. In: Strid A, Tan K (eds) Flora Hellenica 2. Gantner Verlag, Ruggell, pp 199–224Google Scholar
  17. Hegi G (1986) Illustrierte Flora von Mittel-Europa, 3rd rev. ed., 4 (1). Verlag, Berlin-Hamburg, 70 ppGoogle Scholar
  18. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106CrossRefGoogle Scholar
  19. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508Google Scholar
  20. Kidd PS, Bani A, Benizri E, Gonnelli C, Hazotte C, Kisser J, Konstantinou M, Kuppens T, Dimitris K, Laubie B, Malina R, Morel JL, Olcay H, Pardo T, Pons MN, Prieto-Fernández A, Puschenreiter M, Quintela-Sabarís C, Ridard C, Rodríguez-Garrido B, Rosenkranz T, Rozpądek P, Saad R, Selvi F, Simonnot M-O, Tognacchini A, Turnau K, Wazny R, Witters N, Echevarria G (2018) Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Front Environ Sci 6:44CrossRefGoogle Scholar
  21. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  22. Kruckeberg AR (1954) The ecology of serpentine soils. III. Plant species in relation to serpentine soils. Ecology 35:267–274Google Scholar
  23. Kruckeberg AR (2002) Geology and plant life. University Press, WashingtonGoogle Scholar
  24. Kruckeberg AR, Kruckeberg AL (1990) Endemic metallophytes: their taxonomic, genetic and evolutionary attributes. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, Boca Raton, pp 301–312Google Scholar
  25. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102CrossRefGoogle Scholar
  26. Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, Boca Raton, pp 286–297Google Scholar
  27. Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin JP (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468CrossRefGoogle Scholar
  28. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  29. Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Tosc Sci Nat 55:49–74Google Scholar
  30. Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69CrossRefGoogle Scholar
  31. Nkrumah PN, Chaney RL, Morel JL (2018) Agronomy of ‘metal crops’ used in agromining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 19–38CrossRefGoogle Scholar
  32. Pignattelli S, Colzi I, Buccianti A, Cecchi L, Arnetoli M, Monnanni R, Gabbrielli R, Gonnelli C (2012) Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil. J Hazard Mater 227-228:362–369CrossRefGoogle Scholar
  33. Reeves RD, Baker AJM, Kelepertsis A (1997) The distribution and biogeochemistry of some serpentine plants of Greece. In: Jaffré T, Reeves RD, Becquer T (eds) Ecologie des Milieux sur Roches Ultramafiques et sur Sols Metallifères, ORSTOM, Noumea, Documents Scientifiques et Techniques No. III/2:205–207Google Scholar
  34. Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411CrossRefGoogle Scholar
  35. Rešetnik I, Satovic Z, Schneeweiss GM, Liber Z (2013) Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. Mol Phylogenet Evol 69:772–786CrossRefGoogle Scholar
  36. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86CrossRefGoogle Scholar
  37. Rusterholz HP, Aydin D, Bauer B (2012) Population structure and genetic diversity of relict populations of Alyssum montanum on limestone cliffs in the northern Swiss Jura mountains. Alp Bot 122:109–117CrossRefGoogle Scholar
  38. Salihaj M, Bani A, Shahu E, Benizri E, Echevarria G (2018) Metal accumulation by the ultramafic flora of Kosovo. Ecol Res 33(4):687–703CrossRefGoogle Scholar
  39. Selvi F, Carrari E, Colzi I, Coppi A, Gonnelli C (2017) Responses of serpentine plants to pine invasion: vegetation diversity and nickel accumulation in species with contrasting adaptive strategies. Sci Total Environ 595:72–80CrossRefGoogle Scholar
  40. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of 316 serpentine and industrial sites of Albania. Sci Total Environ 209:133–142CrossRefGoogle Scholar
  41. Simonnot M-O, Vaughan J, Laubie B (2018) Processing of bio-ore to products. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 39–52CrossRefGoogle Scholar
  42. Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Francisco Mota J, Al-Shehbaz IA, German DA, Olšavská K, Šingliarová B, Zozomová-Lihová J, Marhold K (2015) AlyBase – database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe. Plant Syst Evol 301:2463–2491CrossRefGoogle Scholar
  43. Tatic B, Veljovic V (1992) Distribution of serpentinized massives on the Balkan peninsulas and their ecology. In: Roberts BA, Proctor J (eds) In: the ecology of areas with Serpentinized rocks- a world view. Kluwer Academic Publishers, Dordrecht, pp 199–215CrossRefGoogle Scholar
  44. Tumi AF, Mihailović N, Gajić BA, Niketić M, Tomović G (2012) Comparative study of hyperaccumulation of nickel by Alyssum murale. Populations from the ultramafics of Serbia. Pol J Environ Stud 21:1855–1866Google Scholar
  45. van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  46. van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79CrossRefGoogle Scholar
  47. van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot MO, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefGoogle Scholar
  48. van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169CrossRefGoogle Scholar
  49. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  50. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116CrossRefGoogle Scholar
  51. Wójcik M, Gonnelli C, Selvi F, Dresler S, Rostański A, Vangronsveld J (2017) Metallophytes of serpentine and calamine soils - their unique ecophysiology and potential for phytoremediation. Adv Bot Res 83:1–42CrossRefGoogle Scholar
  52. Zhang X, Laubie B, Houzelot V, Plasari E, Echevarria G, Simonnot M-O (2016) Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chem Eng Res Des 106:26–32CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversità degli Studi di FirenzeFlorenceItaly
  2. 2.Department of Biomedical Experimental and Clinical SciencesUniversità degli Studi di FirenzeFlorenceFrance
  3. 3.Laboratoire Sols et EnvironnementUniversité de LorraineVandoeuvre-lès-NancyFrance
  4. 4.Department of Agriculture, Food, Environment and Forest Sciences, Laboratories of BotanyUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations