Cluster root formation and function vary in two species with contrasting geographic ranges

  • Andrea Ávila-Valdés
  • Frida I. Piper
  • Alejandra Zúñiga-FeestEmail author
Regular Article



Southern South American Proteaceae can occupy soils that are rich in total phosphorus (P) but poor in available P (for example volcanic soils) thanks to their cluster roots (CR), which mine soil P. However, some southern South American Proteaceae occur in a wide range of soil nutrition. We hypothesized that CR formation and function are more responsive to nutrient soil availability in the widely-distributed Embothrium coccineum than in the narrowly-distributed Orites myrtoidea, which exclusively occurs in recent volcanic depositions.


Survival, growth rate, CR formation (number, biomass) and function (carboxylate exudation, phosphatase activity) were evaluated in seedlings of both species after five months of growth in either a volcanic or organic substrate.


E. coccineum exhibited full survival in both substrates, but had significantly lower growth, higher CR formation, higher CR citrate and malate exudation, and higher phosphatase activity in the volcanic substrate. By contrast, O. myrtoidea had similar growth rate in both substrates but 73% lower survival and null CR formation in the organic compared to the volcanic substrate.


Variation in soil nutrient availability caused variation in growth and CR formation and function in a southern South American Proteaceae species of wider distribution, but not in a narrowly-distributed counterpart.


Carboxylate exudation Embothrium coccineum Orites myrtoidea Phosphatase activity Volcanic depositions 



Financial support was provided by the Fondo Nacional de Desarrollo Científico y Tecnológico de Chile (Fondecyt) 1130440 and 1180699 regular grants. Greenhouse facilities were provided by the Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile. We thank Dr. Mauricio Rondanelli and Dr. Cristián Echeverría for seed collection of O. myrtoidea, Dr. Peter Seemann for his help with the germination of O. myrtoidea seeds, and Corporación Nacional Forestal (CONAF) for the permits to visit and collect seeds in natural protected areas. Also, we thank Caroline Dallstream and Emily Giles for English corrections. We would like to aknowledge to Dr. Jim barrow for your helpful comments and two anonimous referees.


  1. Barrow NJ (1977) Phosphorus uptake and utilization by tree seedlings. Am J Bot 25:571–584. CrossRefGoogle Scholar
  2. Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica 60:69–73CrossRefGoogle Scholar
  3. Borie F, Zunino H (1983) Organic matter-phosphorus associations as a sink in P-fixation processes in allophanic soils of Chile. Soil Biol Biochem 15:599–603. CrossRefGoogle Scholar
  4. Cawthray G (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A 1011:233–240. CrossRefGoogle Scholar
  5. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. CrossRefGoogle Scholar
  6. Delgado M, Zúñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. et J. Forst.). Plant Soil 373:765–773. CrossRefGoogle Scholar
  7. Delgado M, Suriyagoda L, Zúñiga-Feest A, Borie F, Lambers H (2014) Divergent functioning of Proteaceae species: the south American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366. CrossRefGoogle Scholar
  8. Donoso C (2006) Las especies arbóreas de los bosques templados de Chile y Argentina, Autoecología. Marisa Cúneo Ediciones, ValdiviaGoogle Scholar
  9. Fajardo A, Piper FI (2015) High foliar nutrient concentrations and resorption efficiency in Embothrium coccineum (Proteaceae) in southern Chile. Am J Bot 102:208–216. CrossRefGoogle Scholar
  10. Grubb P, Bellingham P, Koyhama T, Piper FI, Valido A (2013) Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide. Biol Rev 88:701–744.
  11. Hechenleitner V, Gardner M, Thomas P, Echeverría C, Escobar B, Brownless P, Martínez C (2005) Plantas amenazadas del centro-sur de Chile. Distribución, conservación y propagación. Universidad Austral de Chile y Real Jardín Botánico de Edimburgo Ediciones, ValdiviaGoogle Scholar
  12. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. CrossRefGoogle Scholar
  13. Lambers H, Raven J, Shaver G, Smith S (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. CrossRefGoogle Scholar
  14. Lambers H, Brundrett M, Raven J, Hopper S (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. CrossRefGoogle Scholar
  15. Lambers H, Bishop JG, Hopper SD, Laliberté E, Zúñiga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348. CrossRefGoogle Scholar
  16. Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste FP, Zemunik G (2018) How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil 424(1-2):11–33.
  17. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Bot Rev 48:597–689. CrossRefGoogle Scholar
  18. Lusk CH, Corcuera LJ (2011) Effects of light availability and growth rate on leaf lifespan of four temperate rain forest Proteaceae. Rev Chil Hist Nat 84:269–277. CrossRefGoogle Scholar
  19. Ma JF (2000) Role of organic acids in detoxification of aluminium in higher plants. Plant Cell Physiol 41:383–390. CrossRefGoogle Scholar
  20. Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46. CrossRefGoogle Scholar
  21. Muler AL, Oliveira RS, Lambers H, Veneklaas EJ (2014) Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia 174:23–31. CrossRefGoogle Scholar
  22. Neumann G, Martinoia E (2002) Cluster roots an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167. CrossRefGoogle Scholar
  23. Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov. Print. Office, Washington, D.CGoogle Scholar
  24. Pfanzelt S, Grau J, Rodriguez R (2008) A vegetation map of Nevados de Chillan volcanic complex, bio-Bío region, Chile. Gayana Bot 65:209–219. CrossRefGoogle Scholar
  25. Piper FI, Baeza G, Zúñiga-Feest A, Fajardo A (2013) Soil nitrogen, and not phosphorus, promotes cluster root formation in a south American Proteaceae. Am J Bot 100:2328–2338. CrossRefGoogle Scholar
  26. Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8(1):38–50.
  27. Ramírez C, Grinbergs J, Valenzuela J, San Martin C (1990) Influencia de las raíces proteiformes en plántulas de Gevuina avellana Mol. Bosque 11:11–20CrossRefGoogle Scholar
  28. Randall PJ, Hayes JE, Hocking PJ, Richardson AE (2001) Root exudates in phosphorus acquisition by plants. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition, new perspectives. Springer, Tokyo, pp 71–101CrossRefGoogle Scholar
  29. Rawson H, Naranjo JA, Smith VC, Fontijn K, Pyle DM, Mather TA, Moreno H (2015) The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. J Volcanol Geotherm Res 299:103–129. CrossRefGoogle Scholar
  30. Renderos L (2017) Diversidad genética y metabólica de los ensambles bacterianos asociados a raíces proteoideas de Embothrium coccineum. Tesis de Magíster en Ciencias Biológicas. Facultad de Ciencias, Universidad de ChileGoogle Scholar
  31. Rovere AE, Chalcoff V (2010) Embothrium coccineum. J.R Forst et G Forst. Kurtziana 35:23–33Google Scholar
  32. Rubio R, Moraga E, Borie F (1990) Acid phosphatase activity and vesicular arbuscular mycorrhizal infection associated with roots of four wheat cultivars. J Plant Nutr 13:593–595. CrossRefGoogle Scholar
  33. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560. CrossRefGoogle Scholar
  34. Sadzawka A, Grez R, Carrasco M, Mora M (2004) Métodos de análisis de tejidos vegetales. Comisión de normalización y acreditación sociedad chilena de la ciencia del sueloGoogle Scholar
  35. Shane M, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004a) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560. CrossRefGoogle Scholar
  36. Shane MW, Szota C, Lambers H (2004b) A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant Cell Environ 27:991–1004. CrossRefGoogle Scholar
  37. Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005. CrossRefGoogle Scholar
  38. Souto CP, Premoli AC, Reich PB (2009) Complex bioclimatic and soil gradients shape leaf trait variation in Embothrium coccineum (Proteaceae) among austral forests in Patagonia. Rev Chil Hist Nat 82:209–222CrossRefGoogle Scholar
  39. Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282.>3.0.CO;2-L CrossRefGoogle Scholar
  40. Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014) Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct Ecol 28:819–828. CrossRefGoogle Scholar
  41. Uren NC (2000) Types, amount, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40Google Scholar
  42. Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197. CrossRefGoogle Scholar
  43. Watt M, Evans J (2003) Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development. Plant Soil 248:271–283. CrossRefGoogle Scholar
  44. Zheng SJ, Ma JF, Matsumoto H (1998) High aluminium resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751. CrossRefGoogle Scholar
  45. Zúñiga-Feest A, Delgado M, Alberdi M (2010) The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.). Plant Soil 334:113–121. CrossRefGoogle Scholar
  46. Zúñiga-Feest A, Delgado M, Bustos-Salazar A, Ochoa V (2015) The southern south American Proteaceae, Embothrium coccineum exhibits intraspecific variation in growth and cluster-root formation depending on climatic and edaphic origins. Plant Soil 396:201–213. CrossRefGoogle Scholar
  47. Zúñiga-Feest A, Muñoz G, Bustos-Salazar A, Ramírez F, Delgado M, Valle S, Díaz L (2018) The nitrogen fixing species Sophora cassioides (Fabaceae), is nutritionally favored and their rhizosphere bacteria modified when is co-cultivated with the cluster root forming Embothrium coccineum (Proteaceae). J Soil Sci Plant Nutr 18(3):597–616. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Escuela de Postgrado, Facultad de Ciencias AgrariasUniversidad Austral de ChileValdiviaChile
  2. 2.Laboratorio de Biología Vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  3. 3.Centro de Investigaciones en Suelos Volcánicos, CISVoUniversidad Austral de ChileValdiviaChile
  4. 4.Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
  5. 5.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile

Personalised recommendations